Designs, Codes and Cryptography

, Volume 81, Issue 3, pp 445–457 | Cite as

Veronese subspace codes

Article

Abstract

Using the geometry of quadrics of a projective plane \(\mathrm{PG}(2,q)\) a family of \((6,q^3(q^2-1)(q-1)/3+(q^2+1)(q^2+q+1),4;3)_q\) constant dimension subspace codes is constructed.

Keywords

Projective bundle Constant dimension subspace code  Singer cyclic group Veronese map 

Mathematics Subject Classification

51E15 05B25 

References

  1. 1.
    Baker, R.D., Brown, J.M.N., Ebert, G.L., Fisher, J.C.: Projective bundles. Bull. Belg. Math. Soc. Simon Stevin 1(3), 329–336 (1994)MathSciNetMATHGoogle Scholar
  2. 2.
    Baker, R.D., Bonisoli, A., Cossidente, A., Ebert, G.L.: Mixed partitions of PG(5, \(q\)). Discrete Math. 208(209), 23–29 (1999)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ballico, E., Cossidente, A., Siciliano, A.: External flats to varieties in symmetric product spaces over finite fields. Finite Fields Appl. 9(3), 300–309 (2003)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bray, J.N., Holt, D.F., Roney-Dougal, C.M.: The Maximal Subgroups of the Low-dimensional Finite Classical Groups, London Mathematical Society Lecture Note Series 407. Cambridge University Press, Cambridge (2013)CrossRefMATHGoogle Scholar
  5. 5.
    Cannon, J., Playoust, C.: An Introduction to MAGMA. University of Sydney, Sydney (1993)Google Scholar
  6. 6.
    Cossidente, A., Pavese, F.: On subspace codes. Des. Codes Cryptogr. (to appear). doi:10.1007/s10623-014-0018-6
  7. 7.
    Figueroa, R.: A family of not \((V, l)\). Math. Z. 181(4), 471–479 (1982)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Glynn, D.G.: Finite Projective Planes and Related Combinatorial Systems, Ph.D. thesis, Adelaide University (1978)Google Scholar
  9. 9.
    Glynn, D.G.: On finite division algebras. J. Combin. Theory Ser. A 44(2), 253–266 (1987)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Honold, T., Kiermaier, M., Kurz, S.: Optimal binary subspace codes of length \(6\). Contemp. Math.-Am. Math. Soc. 632, 157–176 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hirschfeld, J.W.P.: Projective Geometries over Finite Fields, Oxford Mathematical Monographs. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1998)Google Scholar
  12. 12.
    Hirschfeld, J.W.P.: Finite Projective Spaces of Three Dimensions, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1985)Google Scholar
  13. 13.
    Hirschfeld, J.W.P., Thas, J.A.: General Galois Geometries, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1991)Google Scholar
  14. 14.
    Huppert, B.: Endliche Gruppen, I. Die Grundlehren der Mathematischen Wissenschaften, Band 134 Springer, Berlin-New York (1967)Google Scholar
  15. 15.
    Steiner, J.: Systematische Entwicklung der Abhängigkeit geometrischer Gestalten von einander. Reimer, Berlin (1832)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Dipartimento di Matematica Informatica ed EconomiaUniversità della BasilicataPotenzaItaly

Personalised recommendations