Designs, Codes and Cryptography

, Volume 79, Issue 3, pp 407–422 | Cite as

On the extendability of particular classes of constant dimension codes

Article
  • 174 Downloads

Abstract

In classical coding theory, different types of extendability results of codes are known. A classical example is the result stating that every \((4, q^2-1, 3)\)-code over an alphabet of order q is extendable to a \((4, q^2, 3)\)-code. A constant dimension subspace code is a set of \((k-1)\)-spaces in the projective space \(\hbox {PG}(n-1,q)\), which pairwise intersect in subspaces of dimension upper bounded by a specific parameter. The theoretical upper bound on the sizes of these constant dimension subspace codes is given by the Johnson bound. This Johnson bound relies on the upper bound on the size of partial s-spreads, i.e., sets of pairwise disjoint s-spaces, in a projective space \(\hbox {PG}(N,q)\). When \(N+1 \equiv 0 \,\,(\text {mod }s+1)\), it is possible to partition \(\hbox {PG}(N,q)\) into s-spaces, also called s-spreads of \(\hbox {PG}(N,q)\). In the finite geometry research, extendability results on large partial s-spreads to s-spreads in \(\hbox {PG}(N,q)\) are known when \(N+1 \equiv 0\,\,(\text {mod }s+1)\). This motivates the study to determine similar extendability results on constant dimension subspace codes whose size is very close to the Johnson bound. By developing geometrical arguments, avoiding having to rely on extendability results on partial s-spreads, such extendability results for constant dimension subspace codes are presented.

Keywords

Random network coding Extendability of codes Minihypers 

Mathematics Subject Classification

05B25 51E20 

References

  1. 1.
    Ahlswede R., Cai N., Li S.Y.R., Yeung R.W.: Network information flow. IEEE Trans. Inf. Theory 46(4), 1204–1216 (2000).Google Scholar
  2. 2.
    Beutelspacher A.: On \(t\)-covers in finite projective spaces. J. Geom. 12, 10–16 (1979).Google Scholar
  3. 3.
    Blokhuis A.: On the size of a blocking set in \(\text{ PG }(2, p)\). Combinatorica 14, 111–114 (1994).Google Scholar
  4. 4.
    Blokhuis A., Storme L., Szőnyi T.: Lacunary polynomials, multiple blocking sets and Baer subplanes. J. Lond. Math. Soc. 60, 321–332 (1999).Google Scholar
  5. 5.
    Braun M., Etzion T., Ostergärd P.R.J., Vardy A., Wassermann A.: Existence of \(q\)-analogs of Steiner systems. (2013) (submitted).Google Scholar
  6. 6.
    Braun M., Kiermaier M., Nakić A.: On the automorphism group of a binary \(q\)-analog of the Fano plane. Eur. J. Comb. (2015) (to appear).Google Scholar
  7. 7.
    Bruen A.A.: Baer subplanes and blocking sets. Bull. Am. Math. Soc. 76, 342–344 (1970).Google Scholar
  8. 8.
    Dembowski P.: Finite Geometries. Springer, Berlin (1968).Google Scholar
  9. 9.
    Etzion T.: Problems on \(q\)-analogs in coding theory. ArXiv: arXiv:1305.6126v1 [cs.IT] (2013). (http://www.network-coding.eu/pubs.html).
  10. 10.
    Etzion T., Vardy A.: Error-correcting codes in projective space. IEEE Trans. Inf. Theory 57, 1165–1173 (2011).Google Scholar
  11. 11.
    Etzion T., Vardy A.: On \(q\)-analogs of Steiner systems and covering designs. Adv. Math. Commun. 5(2), 161–176 (2011).Google Scholar
  12. 12.
    Govaerts P., Storme L.: On a particular class of minihypers and its applications. I. The result for general \(q\). Des. Codes Cryptogr. 28, 51–63 (2003).Google Scholar
  13. 13.
    Hamada N.: Characterization of minihypers in a finite projective geometry and its applications to error-correcting codes. Bull. Osaka Women’s Univ. 24, 1–24 (1987).Google Scholar
  14. 14.
    Hamada N., Maekawa T.: A characterization of some \(q\)-ary linear codes \((q>(h-1)^{2}, h\ge 3)\) meeting the Griesmer bound. II. Math. Japon. 46, 241–252 (1997).Google Scholar
  15. 15.
    Hamada N., Tamari F.: On a geometrical method of construction of maximal \(t\)-linearly independent sets. J. Comb. Theory Ser. A 25, 14–28 (1978).Google Scholar
  16. 16.
    Heden O., Sissokho P.A.: On the existence of a (2, 3)-spread in V(7, 2). arXiv:1101.5336 (2011).
  17. 17.
    Hill R.: A First Course in Coding Theory. The Clarendon Press, New York (1986).Google Scholar
  18. 18.
    Honold T., Kiermaier M., Kurz S.: Optimal binary subspace codes of length 6, constant dimension 3 and minimum distance 4. Contemp. Math. 632, 157–176 (2015).Google Scholar
  19. 19.
    Ho T., Médard M., Kötter R., Karger D.R., Effros M., Shi J., Leong B.: A random linear network coding approach to multicast. IEEE Trans. Inf. Theory 52(10), 4413–4430 (2006).Google Scholar
  20. 20.
    Kiermaier M., Pavčević M.O.: Intersection numbers for subspace designs. J. Comb. Des. (2014) (to appear). doi:10.1002/jcd.21403.
  21. 21.
    Kötter R., Kschischang F.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54, 3579–3591 (2008).Google Scholar
  22. 22.
    Lambert L.: Random network coding and designs over \({\mathbb{F}}_{q}\). Master Thesis, Ghent University (2013) (http://www.network-coding.eu/pubs.html).
  23. 23.
    Metsch K.: Bose–Burton type theorems for finite projective, affine and polar spaces. Surveys in Combinatorics, 1999 (Canterbury), pp. 137–166. London Mathematical Society Lecture Note Series, vol. 267, Cambridge University Press, Cambridge (1999).Google Scholar
  24. 24.
    Miyakawa M., Munemasa A., Yoshiara S.: On a class of small 2-designs over \(GF(q)\). J. Comb. Des. 3, 61–77 (1995).Google Scholar
  25. 25.
    Thomas S.: Designs over finite fields. Geom. Dedicata 24, 237–242 (1987).Google Scholar
  26. 26.
    Thomas S.: Designs and partial geometries over finite fields. Geom. Dedicata 63, 247–253 (1996).Google Scholar
  27. 27.
    Yeung R.W., Li S.-Y.R., Cai N., Zhang Z.: Network Coding Theory. Boston, MA (2006).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia
  2. 2.Department of MathematicsGhent UniversityGhentBelgium

Personalised recommendations