Designs, Codes and Cryptography

, Volume 80, Issue 2, pp 395–407 | Cite as

Convolutional block codes with cryptographic properties over the semi-direct product \({\mathbb {Z}}/N{\mathbb {Z}} \rtimes {\mathbb {Z}}/M{\mathbb {Z}}\)

  • Marion CandauEmail author
  • Roland Gautier
  • Johannes Huisman


Classic convolutional codes are defined as the convolution of a message and a transfer function over \(\mathbb {Z}\). In this paper, we study time-varying convolutional codes over a finite group G of the form \({\mathbb {Z}}/N{\mathbb {Z}} \rtimes {\mathbb {Z}}/M{\mathbb {Z}}\). The goal of this study is to design codes with cryptographic properties. To define a message u of length k over the group G, we choose a subset E of G that changes at each encoding, and we put \(u = \sum _i u_iE(i)\). These subsets E are generated chaotically by a dynamical system, walking from a starting point (xy) on a space paved by rectangles, each rectangle representing an element of G. So each iteration of the dynamical system gives an element of the group which is saved on the current E. The encoding is done by a convolution product with a fixed transfer function. We have found a criterion to check whether an element in the group algebra can be used as a transfer function. The decoding process is realized by syndrome decoding. We have computed the minimum distance for the group \(G=\mathbb {Z}/7\mathbb {Z} \rtimes \mathbb {Z}/3\mathbb {Z}\). We found that it is slightly smaller than those of the best linear block codes. Nevertheless, our codes induce a symmetric cryptosystem whose key is the starting point (xy) of the dynamical system. Consequently, these codes are a compromise between error correction and security.


Convolutional codes Non-commutative group Symmetric cryptography Error correcting codes 

Mathematics Subject Classification

94B10 94A60 37N99 



The authors would like to thank the Region Bretagne (France) for its financial support.


  1. 1.
    Devaney R.L.: An Introduction to Chaotic Dynamical Systems, 2nd edn. Addison-Wesley, Redwood City (1989).Google Scholar
  2. 2.
    Elias P.: Coding for two noisy channels. In: Information Theory, the 3rd London Symposium, pp. 61–76. Buttersworth’s Scientific Publications, London (1955).Google Scholar
  3. 3.
    Grassl M.: Bounds on the minimum distance of linear codes and quantum codes. Online available at (2007). Accessed 21 July 2014.
  4. 4.
    Hatcher A.: Algebraic Topology. Cambridge University Press, Cambridge (2002).Google Scholar
  5. 5.
    Katz J., Lindell Y.: Introduction to Modern Cryptography. Chapman & Hall/CRC Cryptography and Network Security. Chapman & Hall/CRC, Boca Raton (2008).Google Scholar
  6. 6.
    Marazin M., Gautier R., Burel G.: Blind recovery of k/n rate convolutional encoders in a noisy environment. EURASIP J. Wirel. Commun. Netw. 2011, 168 (2011).Google Scholar
  7. 7.
    Moon T.K.: Convolutional codes. In: Error Correction Coding: Mathematical Methods and Algorithms, chap. 12, pp. 452–580. Wiley-Interscience, Hoboken (2005).Google Scholar
  8. 8.
    Neubauer A.: Convolutional codes. In: Coding Theory: Algorithms, Architectures and Applications, chap. 3, pp. 112–177. Wiley-Interscience, Hoboken (2007).Google Scholar
  9. 9.
    Terras A.: Fourier Analysis on Finite Groups and Applications. London Mathematical Society Student Texts 43. Cambridge University Press, Cambridge (1999).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marion Candau
    • 1
    Email author
  • Roland Gautier
    • 2
  • Johannes Huisman
    • 3
  1. 1.LMBA and Lab-STICCUniversité de Bretagne OccidentaleBrestFrance
  2. 2.Lab-STICCUniversité de Bretagne OccidentaleBrestFrance
  3. 3.LMBAUniversité de Bretagne OccidentaleBrestFrance

Personalised recommendations