Designs, Codes and Cryptography

, Volume 80, Issue 1, pp 149–163 | Cite as

A general check digit system based on finite groups

  • Yanling Chen
  • Markku Niemenmaa
  • A. J. Han Vinck
Article
  • 225 Downloads

Abstract

In this paper, we review a new method for the universal design of a check digit system over an abelian group of arbitrary order. Furthermore, we challenge the current standards by comparing this system with several well-known and widely used systems such as ISBN, MEID, ISAN and the system over alphanumeric characters. We show that this novel design outperforms all of them in terms of the error detection capability with a comparable computational complexity. In particular, besides the well-known five types of errors to be detected (i.e., single error and four double errors which are adjacent/jump transposition and adjacent/jump twin errors), we address the \(t\)-jump transpositions and \(t\)-jump twin errors which generalize the four types of double errors, and aim to design the check digit system with a detection radius as long as possible that depends on \(t\) and reflects the capability of detecting these two special kinds of double errors. The results of this paper are based on the results of the article by Chen et al. (On some properties of a check digit system, 2012).

Keywords

Abelian group Field Check digit Error detection 

Mathematics Subject Classification

20K01 11D88 94B05 

References

  1. 1.
    Beckley D.F.: An optimum system with modulo 11. Comput. Bull. 11, 213–215 (1967).Google Scholar
  2. 2.
    Verhoeff J.: Error Detecting Decimal Codes. Mathematical Centre Tracts, vol. 29. Mathematica Centrum, Amsterdam (1969).Google Scholar
  3. 3.
    Schul R.H.: On check digit systems using anti-symmetric mappings. Numbers, Information and Complexity. Kluwer Academic Publishers, Boston (2000).Google Scholar
  4. 4.
    Belyavskaya G.B., Izbash V.I., Mullen G.L.: Check character systems using quasigroups: I. Des. Codes Cryptogr. 37, 215–227 (2005).Google Scholar
  5. 5.
    Belyavskaya G.B., Izbash V.I., Mullen G.L.: Check character systems using quasigroups: II. Des. Codes Cryptogr. 37, 405–419 (2005).Google Scholar
  6. 6.
    Damm H.M.: Total anti-symmetrische Quasigruppen (Dr. rer. nat.). Philipps-Universität Marburg (2004).Google Scholar
  7. 7.
    Gumm H.P.: A new class of check-digit methods for arbitrary number systems. IEEE Trans. Inf. Theory 31, 102–105 (1985).Google Scholar
  8. 8.
    Broecker C., Schulz R.-H., Stroth G.: Check character systems using Chevalley groups. Des. Codes Cryptogr. 10(2), 137–143 (1997).Google Scholar
  9. 9.
    Niemenmaa M.: A check digit system for hexadecimal numbers. Appl. Algebra Eng. Commun. Comput. 22, 109–112 (2011).Google Scholar
  10. 10.
    MISB ST 1204.1: Motion Imagery Identification System (MIIS) - Core Identifier (2013).Google Scholar
  11. 11.
    Chen Y., Niemenmaa M., Han Vinck A.J., Gligoroski D.: On some properties of a check digit system. IEEE International Symposium on Information Theory (ISIT 2012), Cambridge, MA, 1–6 July (2012).Google Scholar
  12. 12.
    Chen Y., Niemenmaa M., Han Vinck A.J.: A check digit system over a group of arbitrary order. In: 8th International ICST Conference on Communications and Networking in China, pp. 897–902 (2013).Google Scholar
  13. 13.
    Mullen G.L., Shcherbacov V.A.: Properties of codes with one check symbol from a quasigroup point of view. Izv. AN RM Math. 3, 71–86 (2002).Google Scholar
  14. 14.
    Mullen G.L., Shcherbacov V.: \(n\)-T-quasigroup codes with one check symbol and their error detection capabilities. Comment. Math. Univ. Carolinae 45(2), 321–340 (2004).Google Scholar
  15. 15.
    ISO/IEC 7064: 2003(E): Information technology—security techniques—check character systems.Google Scholar
  16. 16.
    3GPP2 report S. R0048: 3G Mobile Equipment Identifier (MEID)—Stage 1 (2005).Google Scholar
  17. 17.
    3GPP2 X. S0008–0 v3.0: MAP Support for the Mobile Equipment Identity (MEID) (2009).Google Scholar
  18. 18.
    ISO/IEC 7812–1:2006(E): Identification cards—identification of issuers—part 1: numbering system.Google Scholar
  19. 19.
    ISO 15706 2002(E): Information and documentation—International Standard Audiovisual Number (ISAN).Google Scholar
  20. 20.
    NAIS Program Standards and Technical Reference, Version 2.2, APHIS, USDA (2008).Google Scholar
  21. 21.
  22. 22.
  23. 23.
    ISO 15118–1:2013: Road vehicles—vehicle to grid communication interface—part 1: general information and use-case definition.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yanling Chen
    • 1
  • Markku Niemenmaa
    • 2
  • A. J. Han Vinck
    • 3
  1. 1.Institute of Digital Communication SystemsRuhr University BochumBochumGermany
  2. 2.Department of Mathematical SciencesUniversity of OuluOuluFinland
  3. 3.Institute of Digital Signal ProcessingUniversity of Duisburg-EssenDuisburgGermany

Personalised recommendations