Abstract
The spectrum of possible parameters of symmetric configurations is investigated. We propose some new constructions, mainly based on Finite Geometry and on extension methods. New parameters are provided, both for general symmetric configurations and for cyclic symmetric configurations. For several values of \(k\), new upper bounds on the minimum integer \(E\) such that for each \(v\ge E\) there exists a (cyclic) symmetric configuration \(v_{k}\) are obtained.
Similar content being viewed by others
References
Abreu M., Funk M., Labbate D., Napolitano V.: On (minimal) regular graphs of girth 6. Australas. J. Comb. 35, 119–132 (2006).
Abreu M., Funk M., Labbate D., Napolitano V.: Configuration graphs of neighbourhood geometries. Contrib. Discret. Math. 3, 109–122 (2008).
Abreu M., Funk M., Labbate D., Napolitano V.: Deletions, extension, and reductions of elliptic semiplanes. Innov. Incid. Geom. 11, 139–155 (2010).
Abreu M., Funk M., Labbate D., Napolitano V.: On the ubiquity and utility of cyclic schemes. Aust. J. Comb. 55, 95–120 (2013).
Afanassiev V.B., Davydov A.A., Zyablov V.V.: Low density concatenated codes with Reed-Solomon component codes. In: Proceedings XI International Symposium on Problems of Redundancy in Information and Control System, St.-Petersburg, Russia, pp. 47–51 (2007). http://k36.org/redundancy2007/files/Proceedings.pdf.
Afanassiev V.B., Davydov A.A., Zyablov V.V.: Low density parity check codes on bipartite graphs with Reed–Solomon constituent codes. Inf. Process. 9(4), pp. 301–331 (2009). http://www.jip.ru/2009/301-331-2009.pdf.
Araujo-Pardo G., Balbuena C.: Constructions of small regular bipartite graphs of girth 6. Networks 57, 121–127 (2011).
Araujo-Pardo G., Balbuena C., Héger T.: Finding small regular graphs of girths 6, 8 and 12 as subgraphs of cages. Discret. Math. 310, 1301–1306 (2010).
Baker R.D.: An elliptic semiplane. J. Comb. Theory A 25, 193–195 (1978).
Balbuena C.: Incidence matrices of projective planes and of some regular bipartite graphs of girth 6 with few vertices. SIAM J. Discret. Math. 22, 1351–1363 (2008).
Baumert L.D., Gordon D.M.: On the existence of cyclic difference sets with small parameters. In: van der Poorten, A., Stein, A. (eds.) High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams, vol. 41, pp. 61–68. American Mathematical Society, Fields Institute Communications, Providence (2004)
Boben M.: Irreducible \((v3)\) configurations and graphs. Discret. Math. 307, 331–344 (2007).
Bose R.C.: An affine analogue of Singer’s theorem. J. Ind. Math. Soc. 6, 1–15 (1942).
Carstens H.G., Dinski T., Steffen E.: Reduction of symmetric configurations \(n_{3}\). Discret. Appl. Math. 99, 401–411 (2000).
Coykendall J., Dover J.: Sets with few intersection numbers from Singer subgroup orbits. Eur. J. Combin. 22, 455–464 (2001).
Davydov A.A., Faina G., Giulietti M., Marcugini S., Pambianco F.: Tables of parameters of symmetric configurations \(v_{k}\). (2014). arXiv:1312.3837 [math.CO]
Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: Symmetric configurations for bipartite-graph codes. In: Proceedings XI International Workshop Algebraic Combinatorial Coding Theory, ACCT2008, Pamporovo, Bulgaria, pp. 63–69 (2008). http://www.moi.math.bas.bg/acct2008/b11.pdf.
Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: On the spectrum of possible parameters of symmetric configurations. In: Proceedings XII International Symposium on Problems of Redundancy in Informmation and Control Systems, Saint-Petersburg, Russia, pp. 59–64 (2009). http://k36.org/redundancy2009/proceedings.pdf.
Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: Some combinatorial aspects of constructing bipartite-graph codes. Graphs Comb. 29(2), 187–212 (2013).
Dimitromanolakis A.: Analysis of the Golomb ruler and the Sidon set problems, and determination of large, near-optimal Golomb rulers. Department of Electronic Computer Engineering Technology University of Crete (2002). http://www.cs.toronto.edu/~apostol/golomb/main.pdf.
Drakakis K.: A review of the available construction methods for Golomb rulers. Adv. Math. Commun. 3, 235–250 (2009).
Funk M.: On configurations of type \(n_k\) with constant degree of irreducibility, J. Comb. Theory Ser. A, 65, 173–201 (1993).
Funk M.: Cyclic difference sets of positive deficiency. Bull. Inst. Comb. Appl. 53, 47–56 (2008).
Funk M., Labbate D., Napolitano V.: Tactical (de-)compositions of symmetric configurations. Discret. Math. 309, 741–747 (2009).
Gabidulin E., Moinian A., Honary B.: Generalized construction of quasi-cyclic regular LDPC codes based on permutation matrices. In: Proceedings International Symposium Information Theory 2006, ISIT 2006, Seattle, pp. 679–683 (2006).
Gács A., Héger T.: On geometric constructions of \((k, g)\)-graphs. Contrib. Discret. Math. 3, 63–80 (2008).
Graham R.L., Sloane N.J.A.: On additive bases and harmonious graphs. SIAM J. Algebr. Discret. Methods 1, 382–404 (1980).
Gropp H.: On the existence and non-existence of configurations \(n_{k}\). J. Comb. Inf. Syst. Sci. 15, 34–48 (1990).
Gropp H.: Configurations, regular graphs and chemical compounds. J. Math. Chem. 11, 145–153 (1992).
Gropp H.: Non-symmetric configurations with deficiencies 1 and 2. In: Barlotti, A., Bichara, A., Ceccherini, P.V., Tallini, G. (eds.) Combinatorics ’90: Recent Trends and Applications. Ann. Discret. Math. vol. 52, pp. 227–239. Elsevier, Amsterdam (1992).
Gropp H.: Configurations and graps - II. Discret. Math. 164, 155–163 (1997).
Gropp H.: Configurations between geometry and combinatorics. Discret. Appl. Math. 138, 79–88 (2004).
Gropp H.: Configurations. In: Colbourn, C.J., Dinitz, J. (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn, chap VI.7, pp. 353–355. CRC Press, Boca Raton (2007).
Grünbaum B.: Configurations of Points and Line. Gradute Studies in Mathematics, vol. 103, American Mathematical Society, Providence (2009).
Haanpää H., Huima A., Östergård P.R.J.: Sets in \(Z_{n}\) with distinct sums of pairs. Discret. Appl. Math. 138, 99–106 (2004).
Hirschfeld J.W.P.: Projective Geometries over Finite Fields, 2nd edn. Oxford University Press, Oxford (1998).
Huang Q., Diao Q., Lin S.: Circulant decomposition: Cyclic, quasi-cyclic and LDPC codes. In: International Symposium on Information Theory and Its Applications (ISITA), pp. 383–388 (2010).
Huang Q., Diao Q., Lin S., Abdel-Ghaffar K.: Cyclic and quasi-cyclic LDPC codes: new developments. In: Information Theory and Applications Workshop (ITA), pp. 1–10 (2011).
Kaski P., Östergård P.R.J.: There exists no symmetric configuration with 33 points and line size 6. Aust. J. Comb. 38, 273–277 (2007).
Kaski P., Östergård P.R.J.: There are exactly five biplanes with k = 11. J. Combin. Des. 16, 117–127 (2007).
Krčadinac V.: Construction and classification of finite structures by computer. PhD Thesis, University of Zagreb (2004), in Croatian
Li Z.-W., Chen L., Zeng L., Lin S., Fong W.H.: Efficient encoding of quasi-cyclic low-density parity-check codes. IEEE Trans. Commun. 54, 71–81 (2006).
Ling A.C.H.: Difference triangle sets from affine planes. IEEE Trans. Inf. Theory 48, 2399–2401 (2002).
Lipman M.J.: The existence of small tactical configurations. In: Graphs and Combinatorics, Springer Lecture Notes in Mathematics vol. 406, Springer, Berlin, pp. 319–324 (1974).
Longyear J.Q.: Tactical constructions, J. Combin. Theory Ser. A, 19, 200–207 (1975).
Martinetti V.: Sulle configurazioni piane \(\mu _{3}\). Annali di matematica pura ed applicata (2) 15 1–26 (1887–88).
Mathon R.: Divisible semiplanes. In: Colbourn, C.J., Dinitz, J. (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn, chap VII.3, pp. 729–731. CRC Press, Boca Raton (2007).
Mendelsohn N.S., Padmanabhan R., Wolk B.: Planar projective configurations I, Note di Matematica 7, 91–112 (1987). http://siba-ese.unisalento.it/index.php/notemat/issue/view/196.
Pepe V.: LDPC codes from the Hermitian curve. Des. Codes Crypt. 42, 303–315 (2007).
Ruzsa I.Z.: Solving a linear equation in a set of integers I. Acta Arith. 65, 259–282 (1993).
Shearer J.: Difference triangle sets. In: Colbourn, C.J., Dinitz, J. (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn, chap VI.19, pp. 436–440. CRC Press, Boca Raton (2007).
Shearer J.: Table of lengths of shortest known Golomb rulers. http://www.research.ibm.com/people/s/shearer/grtab.html.
Shearer J.: Modular Golomb rulers. http://www.research.ibm.com/people/s/shearer/mgrule.html.
Shearer J.B.: Difference triangle sets constructions, IBM Research report, RC24623(W0808–045) (2008).
Singer J.: A theorem in finite projective geometry and some applications to number theory. Trans. Am. Math. Soc. 43, 377–385 (1938).
Swanson C.N.: Planar cyclic difference packings. J. Comb. Des. 8, 426–434 (2000).
Acknowledgments
The authors would like to thank one of the anonymous referees for his/her helpful comments and remarks, and for bringing to our attention papers [3, 10]. The research of G. Faina, M. Giulietti, S. Marcugini, and F. Pambianco was supported by Ministry for Education, University and Research of Italy (MIUR) (Project “Geometrie di Galois e strutture di incidenza”, PRIN 2009–2010) and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA—INdAM). The research of A.A. Davydov was carried out at the IITP RAS at the expense of the Russian Foundation for Sciences (Project 14-50-00150)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by J. H. Koolen.
Rights and permissions
About this article
Cite this article
Davydov, A.A., Faina, G., Giulietti, M. et al. On constructions and parameters of symmetric configurations \(v_{k}\) . Des. Codes Cryptogr. 80, 125–147 (2016). https://doi.org/10.1007/s10623-015-0070-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-015-0070-x
Keywords
- Configurations in combinatorics
- Symmetric configurations
- Cyclic configurations
- Golomb rulers
- Projective geometry
- LDPC codes