Abstract
The linear representation \(T_n^*(\mathcal {K})\) of a point set \(\mathcal {K}\) in a hyperplane of \(\mathrm {PG}(n+1,q)\) is a point-line geometry embedded in this projective space. In this paper, we will determine the isomorphisms between two linear representations \(T_n^*(\mathcal {K})\) and \(T_n^*(\mathcal {K}')\), under a few conditions on \(\mathcal {K}\) and \(\mathcal {K}'\). First, we prove that an isomorphism between \(T_n^*(\mathcal {K})\) and \(T_n^*(\mathcal {K}')\) is induced by an isomorphism between the two linear representations \(T_n^*(\overline{\mathcal {K}})\) and \(T_n^*(\overline{\mathcal {K}'})\) of their closures \(\overline{\mathcal {K}}\) and \(\overline{\mathcal {K}'}\). This allows us to focus on the automorphism group of a linear representation \(T_n^*(\mathcal {S})\) of a subgeometry \(\mathcal {S}\cong \mathrm {PG}(n,q)\) embedded in a hyperplane of the projective space \(\mathrm {PG}(n+1,q^t)\). To this end we introduce a geometry \(X(n,t,q)\) and determine its automorphism group. The geometry \(X(n,t,q)\) is a straightforward generalization of \(H_{q}^{n+2}\) which is known to be isomorphic to the linear representation of a Baer subgeometry. By providing an elegant algebraic description of \(X(n,t,q)\) as a coset geometry we extend this result and prove that \(X(n,t,q)\) and \(T_n^*(\mathcal {S})\) are isomorphic. Finally, we compare the full automorphism group of \(T^*_n(\mathcal {S})\) with the “natural” group of automorphisms that is induced by the collineation group of its ambient space.
This is a preview of subscription content, access via your institution.
References
Ahrens R.W., Szekeres G.: On a combinatorial generalization of 27 lines associated with a cubic surface. J. Aust. Math. Soc. 10, 485–492 (1969).
Bader L., Lunardon G.: Desarguesian spreads. Ricerche Mat. 60, 15–37 (2011).
Barlotti A., Cofman J.: Finite Sperner spaces constructed from projective and affine spaces. Abh. Math. Sem. Univ. Hamburg 40, 231–241 (1974).
Bichara A., Mazzocca F., Somma C.: On the classification of generalized quadrangles in a finite affine space AG\((3,2^h)\). Boll. Unione Mat. Ital. B (5) 17(1), 298–307 (1980).
Bruck R.H.: R.H. Finite nets. I. Numerical invariants. Can. J. Math. 3, 94–107 (1951).
Cara P., Rottey S., Van de Voorde G.: The isomorphism problem for linear representations and their graphs. Adv. Geom. doi:10.1515/advgeom-2013-0040.
Debroey I.: Semi-partiële meetkunden. Ph.D. Thesis, Ghent University (1978).
De Clerck F.: Een kombinatorische studie van de eindige partiele meetkunden. Ph.D. Thesis, Ghent University (1978).
De Winter S.: Elation and translation semipartial geometries. J. Comb. Theory Ser. A 108, 313–330 (2004).
De Winter S.: Non-isomorphic semipartial geometries. Des. Codes Cryptogr. 47, 3–9 (2008).
Grundhoefer T., Joswig M., Stroppel M.: Slanted symplectic quadrangles. Geom. Dedicata 49, 143–154 (1994).
Hall Jr M.: Affine Generalized Quadrilaterals. Studies in Pure Mathematics. Academic Press, London (1971).
Hall Jr M.: The Theory of Groups. AMS Chelsea, Providence (1999).
Hirschfeld J.W.P., Thas J.A.: General Galois Geometries. Oxford University Press, Oxford (1991).
Horn R.A., Johnson C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985).
Hughes D., Piper F.: Projective Planes. Springer, New York (1973).
Lavrauw M., Van de Voorde G.: Field reduction and linear sets in finite geometry. AMS Contemp. Math. Am. Math. Soc. (to appear) http://arxiv.org/abs/1310.8522.
Lidl R., Niederreiter H.: Finite Fields. Encyclopedia of Mathematics and Its Applications, vol. 20. Cambridge University Press, Cambridge (1997).
Payne S.E., Thas J.A.: Finite Generalized Quadrangles. Research Notes in Mathematics, vol. 110. Pitman, Boston (1984).
Acknowledgments
Stefaan De Winter was supported by Michigan Technological University REF Grant R01289. Sara Rottey was partially supported by Michigan Technological University REF Grant R01289. Geertrui Van de Voorde was supported by the Fund for Scientific Research – Flanders (FWO)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by D. Jungnickel.
Rights and permissions
About this article
Cite this article
De Winter, S., Rottey, S. & Van de Voorde, G. Linear representations of subgeometries. Des. Codes Cryptogr. 77, 203–215 (2015). https://doi.org/10.1007/s10623-014-9999-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-014-9999-4
Keywords
- Linear representation
- Automorphism group
- Subgeometry
- Coset geometry
Mathematics Subject Classfication
- 51E20