Designs, Codes and Cryptography

, Volume 76, Issue 1, pp 81–87 | Cite as

The second generalized Hamming weight of certain Castle codes

  • Wilson Olaya-LeónEmail author
  • Claudia Granados-Pinzón


We compute the bound \(d_2 ^*\) on the second generalized Hamming weight for some AG codes coming from Castle curves. We consider those codes related to Weierstrass semigroups generated by two integers. Important codes as Hermitian, Norm-Trace and certain hyperelliptic codes belong to this class of codes. We obtain a simple characterization for the true values of the second generalized Hamming weight of all Hermitian codes.


Error-correcting codes AG codes Castle codes  Generalized Hamming weights Hermitian codes 

Mathematics Subject Classification

94A27 94B65 



The authors wish to thank Professor Carlos Munuera for his useful discussions. We also wish to thank the referees for many interesting comments.


  1. 1.
    Andersen H., Geil O.: Evaluation codes from order domain theory. Finite Fields Appl. 14, 92–123 (2008).Google Scholar
  2. 2.
    Barbero A.I., Munuera C.: The Weight Hierarchy of Hermitian codes. J. Discret. Math. 13(1), 79–104 (2000).Google Scholar
  3. 3.
    Geil O.: On codes from norm-trace curves. Finite Fields Appl. 9, 351–371 (2003).Google Scholar
  4. 4.
    Geil O., Munuera C., Ruano D., Torres F.: On the order bounds for one-point AG codes. Adv. Math. Commun. 5, 489–504 (2011).Google Scholar
  5. 5.
    Munuera C.: On the generalized Hamming weights of geometric Goppa codes. IEEE Trans. Inf. Theory 40(6), 2092–2099 (1994).Google Scholar
  6. 6.
    Munuera C., Ramirez D.: The second and third generalized Hamming weights of Hermitian codes. IEEE Trans. Inf. Theory 45(2), 709–712 (1999).Google Scholar
  7. 7.
    Munuera C., Sepulveda A. and Torres F.: Algebraic geometry codes from castle curves, coding theory and applications. In: Barbero, A. (ed.) Lecture Note on Computer Science, vol. 5228, pp. 117–127. Springer, Berlin (2008).Google Scholar
  8. 8.
    Olaya-León W., Granados-Pinzón C.: Sobre la distancia mínima de códigos AG unipuntuales Castillo. Ing. Cienc. 8(16), 77–93 (2012).Google Scholar
  9. 9.
    Olaya-León W., Munuera C.: On the minimum distance of Castle codes. Finite Fields Appl. 20, 55–63 (2013).Google Scholar
  10. 10.
    Wei V.K.: Generalized Hamming weights for linear codes. IEEE Trans. Inf. Theory 37(5), 1412–1418 (1991).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Escuela de MatemáticasUniversidad Industrial de SantanderBucaramangaColombia

Personalised recommendations