Advertisement

Designs, Codes and Cryptography

, Volume 78, Issue 2, pp 493–526 | Cite as

Generic constructions of integrated PKE and PEKS

  • Yu Chen
  • Jiang Zhang
  • Dongdai Lin
  • Zhenfeng Zhang
Article

Abstract

In this paper we investigate the topic of integrated public-key encryption (PKE) and public-key encryption with keyword search (PEKS) schemes (PKE–PEKS as shorthand). We first formalize the strongest security notion to date for PKE–PEKS schemes, named joint CCA-security. We then propose two simple constructions of jointly CCA-secure PKE–PEKS schemes from anonymous (hierarchical) identity-based encryption schemes. Besides, we also define the notion of consistency for PKE–PEKS schemes, as well as revisit its related notions (including consistency of PEKS schemes, robustness and collision-freeness of IBE schemes), which may be of independent interest.

Keywords

PKE–PEKS Joint security Consistency Collision-freeness Robustness 

Mathematics Subject Classification

94A60 

Notes

Acknowledgments

Yu Chen is supported by the National Natural Science Foundation of China under Grant No. 61303257, 61379141, the Strategic Priority Research Program of CAS under Grant No. XDA06010701, and the National 973 Program of China under Grant No.2011CB302400. Jiang Zhang and Zhenfeng Zhang are sponsored by the National Basic Research Program of China under Grant No. 2013CB338003, and the National Natural Science Foundation of China under Grant No. 61170278, 91118006. We are grateful to Zongyang Zhang, Qiong Huang, and Sherman S.M. Chow for helpful discussions. We also thank the anonymous DCC reviewers for many useful comments.

References

  1. 1.
    Abdalla M., Bellare M., Rogaway P.: The oracle Diffie–Hellman assumptions and an analysis of dhies. In: Naccache D. (ed.) Topics in Cryptology-CT-RSA 2001. Lecture Notes in Computer Science, vol. 2020, pp. 143–158. Springer, Berlin (2001).Google Scholar
  2. 2.
    Abdalla M., Bellare M., Catalano D., Kiltz E., Kohno T., Lange T., Malone-Lee J., Neven G., Paillier P., Shi H.: Searchable encryption revisited: Consistency properties, relation to anonymous ibe, and extensions. J. Cryptol. 21(3), 350–391 (2008).Google Scholar
  3. 3.
    Abdalla M., Bellare M., Neven G.: Robust encryption. In: Micciancio D. (ed.) TCC 2010. Lecture Notes in Computer Science, vol. 5978, pp. 480–497. Springer, Berlin (2010).Google Scholar
  4. 4.
    Agrawal S., Boneh D., Boyen X.: Efficient lattice (h)ibe in the standard model. In: Gilbert H. (ed.) Advances in Cryptology—EUROCRYPT 2010. Lecture Notes in Computer Science, vol. 6110, pp. 553–572. Springer, Berlin (2010).Google Scholar
  5. 5.
    Baek J., Safavi-Naini R., Susilo W.: On the integration of public key data encryption and public key encryption with keyword search. In: Katsikas S.K., Lopez J., Backes M., Gritzalis S., Preneel B., (eds.) Information Security, 9th International Conference, ISC 2006. Lecture Notes in Computer Science, vol. 4176, pp. 217–232. Springer, Berlin (2006).Google Scholar
  6. 6.
    Boneh D., Boyen X.: Efficient selective-id secure identity based encryption without random oracles. In: Cachin C., Camenisch J.L. (eds.) Advances in Cryptology—EUROCRYPT 2004. Lecture Notes in Computer Science, vol. 3027, pp. 223–238. Springer, Berlin (2004).Google Scholar
  7. 7.
    Boneh D., Boyen X.: Short signatures without random oracles. In: Cachin C., Camenisch J. (eds.) Advances in Cryptology—EUROCRYPT 2004. Lecture Notes in Computer Science, vol. 3027, pp. 56–73. Springer, Berlin (2004).Google Scholar
  8. 8.
    Boneh D., Boyen X.: Short signatures without random oracles and the sdh assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008).Google Scholar
  9. 9.
    Boneh D., Franklin M.K.: Identity-based encryption from the weil pairing. SIAM J. Comput. 32, 586–615 (2003).Google Scholar
  10. 10.
    Boneh D., Waters B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan S.P. (ed.) Theory of Cryptography, 4th Theory of Cryptography Conference, TCC 2007. Lecture Notes in Computer Science, vol. 4392, pp. 535–554. Springer, Beriln (2007).Google Scholar
  11. 11.
    Boneh D., Canetti R., Halevi S., Katz J.: Chosen-ciphertext security from identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007).Google Scholar
  12. 12.
    Boneh D., Di Crescenzo G., Ostrovsky R., Persiano G.: Public key encryption with keyword search. In: Advances in Cryptology—EUROCRYPT 2004. Lecture Notes in Computer Science, vol. 3621, pp. 506–522. Springer, Berlin (2004).Google Scholar
  13. 13.
    Boneh D., Gentry C., Hamburg M.: Space-efficient identity based encryption without pairings. In: 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2007, pp. 647–657. IEEE Computer Society (2007).Google Scholar
  14. 14.
    Boneh D., Kushilevitz .E, Ostrovsky R., Skeith III W.E.: Public key encryption that allows pir queries. In: Menezes A. (ed.) Advances in Cryptology—CRYPTO 2007. Lecture Notes in Computer Science, vol. 4622, pp. 50–67. Springer, Berlin (2007).Google Scholar
  15. 15.
    Boneh D., Raghunathan A., Segev G.: Function-private identity-based encryption: hiding the function in functional encryption. In: Canetti R., Garay J.A. (eds.) Advances in Cryptology—CRYPTO 2013. Lecture Notes in Computer Science, vol. 8043, pp. 461–478. Springer, Berlin (2013).Google Scholar
  16. 16.
    Boyen X.: Lattice mixing and vanishing trapdoors: a framework for fully secure short signatures and more. In: Nguyen, P.Q., Pointcheval D. (eds.) Public Key Cryptography—PKC 2010. Lecture Notes in Computer Science, vol. 6056, pp. 499–517. Springer, Berlin (2010).Google Scholar
  17. 17.
    Boyen X., Waters B.: Anonymous hierarchical identity-based encryption (without random oracles). In: Dwork C. (ed.) Advances in Cryptology—CRYPTO 2006. Lecture Notes in Computer Science, vol. 4117, pp. 290–307. Springer, Berlin (2006).Google Scholar
  18. 18.
    Canetti R., Halevi S., Katz J.: Chosen-ciphertext security from identity based encryption. In: Cachin C., Camenisch J.L. (eds.) Advances in Cryptology—EUROCRYPT 2004. Lecture Notes in Computer Science, vol. 3027, pp. 207–222. Springer, Berlin (2004).Google Scholar
  19. 19.
    Cash D., Hofheinz D., Kiltz E., Peikert C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert H. (ed.) Advances in Cryptology—EUROCRYPT 2010. Lecture Notes in Computer Science, vol. 6110, pp. 523–552. Springer, Berlin (2010).Google Scholar
  20. 20.
    Cocks C.: An indentity based encryption scheme based on quadratic residues. In: Cryptography and Coding, 8th IMA International Conference. Lecture Notes in Computer Science, vol. 2260, pp. 360–363. Springer, Berlin (2001).Google Scholar
  21. 21.
    Cramer R., Shoup V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen L.R. (ed.) Advances in Cryptology—EUROCRYPT 2002. Lecture Notes in Computer Science, vol. 2332, pp. 45–64. Springer, Berlin (2002).Google Scholar
  22. 22.
    De Caro A., Iovino V., and Persiano G.: Fully secure anonymous hibe and secret-key anonymous Ibe with short ciphertexts. In: 4th International Conference—Pairing-Based Cryptography—Pairing 2010. Lecture Notes in Computer Science, vol. 6487, pp. 347–366. Springer, Beriln (2010).Google Scholar
  23. 23.
    Di Crescenzo G., Saraswat V.: Public key encryption with searchable keywords based on jacobi symbols. In: Srinathan K., Rangan C.P., Yung M., (eds.) Progress in Cryptology—INDOCRYPT 2007. Lecture Notes in Computer Science, vol. 4859, pp. 282–296. Springer, Berlin (2007).Google Scholar
  24. 24.
    Dodis Y., Katz J.: Chosen-ciphertext security of multiple encryption. In: Kilian J. (ed.) Theory of Cryptography, TCC 2005. Lecture Notes in Computer Science, vol. 3378, pp. 188–209. Springer, Berlin (2005).Google Scholar
  25. 25.
    Dolev D., Dwork C., Naor M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000).Google Scholar
  26. 26.
    ElGamal T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985).Google Scholar
  27. 27.
    Farshim P., Libert B., Paterson K.G., Quaglia E.A.: Robust encryption, revisited. In: Kurosawa K., Hanaoka G. (eds.) Public-Key Cryptography—PKC 2013. Lecture Notes in Computer Science, vol. 7778, pp. 352–368. Springer, Berlin (2013).Google Scholar
  28. 28.
    Fuhr T., Paillier P.: Decryptable searchable encryption. In: Susilo W., Liu J.K., Mu Y. (eds.) Provable Security, First International Conference, ProvSec 2007. Lecture Notes in Computer Science, vol. 4784, pp. 228–236. Springer, Berli (2007).Google Scholar
  29. 29.
    Gentry C., Silverberg A.: Hierarchical id-based cryptography. In: Zheng Y. (ed.) Advances in Cryptology—ASIACRYPT 2002. Lecture Notes in Computer Science, vol. 2501, pp. 548–566. Springer, Berlin (2002).Google Scholar
  30. 30.
    Gentry C.: Practical identity-based encryption without random oracles. In: Vaudenay S. (ed.) Advances in Cryptology—EUROCRYPT 2006. Lecture Notes in Computer Science, vol. 4004, pp. 445–464. Springer, Berlin (2006).Google Scholar
  31. 31.
    Gentry C., Peikert C., Vaikuntanathan V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC 2008), pp. 197–206. ACM Press, New York (2008).Google Scholar
  32. 32.
    Haber S., Pinkas B.: Securely combining public-key cryptosystems. In: Proceedings of the 8th ACM Conference on Computer and Communications Security (CCS 2001), pp. 215–224. ACM Press, New York (2001).Google Scholar
  33. 33.
    Hofheinz D., Weinreb E.: Searchable encryption with decryption in the standard model. IACR Cryptology ePrint Archive, Report 2008/423 (2008). http://eprint.iacr.org/2008/423. Accessed 25 June 2012.
  34. 34.
    Horwitz J., Lynn B.: Toward hierarchical identity-based encryption. In: Advances in Cryptology—EUROCRYPT 2002. Lecture Notes in Computer Science, vol. 2322, pp. 466–481. Springer, Berlin (2002).Google Scholar
  35. 35.
    Krawczyk H., Rabin T.: Chameleon signatures. In: Proceedings of the Network and Distributed System Security Symposium (NDSS 2000). The Internet Society, San Diego (2000).Google Scholar
  36. 36.
    Kushilevitz E., Ostrovsky R.: Replication is not needed: single database, computationally-private information retrieval. In: 38th Annual Symposium on Foundations of Computer Science (FOCS 1997), pp. 364–373. IEEE Computer Society, Los Alamitos (1997).Google Scholar
  37. 37.
    Micciancio D., Peikert C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval D., Johansson T. (eds.) Advances in Cryptology—EUROCRYPT 2012. Lecture Notes in Computer Science, vol. 7237, pp. 700–718. Springer, Berlin (2012).Google Scholar
  38. 38.
    Mohassel P.: A closer look at anonymity and robustness in encryption schemes. In: Masayuki A. (ed.) Advances in Cryptology—ASIACRYPT 2010. Lecture Notes in Computer Science, vol. 6477, pp. 501–518. Springer, Berlin (2010).Google Scholar
  39. 39.
    Nishioka M.: Perfect keyword privacy in peks systems. In: Provable Security—6th International Conference (ProvSec 2012). Lecture Notes in Computer Science, vol. 7496, pp. 175–192. Springer, Berlin (2012).Google Scholar
  40. 40.
    Okamoto T., Pointcheval D.: The gap-problems: a new class of problems for the security of cryptographic schemes. In: Kim K. (ed.) Proceedings of Public Key Cryptography—PKC 2001. Lecture Notes in Computer Science, vol. 1992, pp. 104–118. Springer, Berlin (2001).Google Scholar
  41. 41.
    Paterson K.G., Schuldt J.C.N., Stam M., Thomson S.: On the joint security of encryption and signature, revisited. In: Lee D.H., Wang X. (eds.) Advances in Cryptology—ASIACRYPT 2011. Lecture Notes in Computer Science, vol. 7073, pp. 161–178. Springer, Berlin (2011).Google Scholar
  42. 42.
    Sakai R., Kasahara M.: Id based cryptosystems with pairing on elliptic curve. Cryptology ePrint Archive, Report 2003/054 (2003). http://eprint.iacr.org/2003/054. Accessed 25 June 2012.
  43. 43.
    Seo J.H., Cheon J.H.: Fully secure anonymous hierarchical identity-based encryption with constant size ciphertexts. IACR Cryptology ePrint Archive, Report 2011/021 (2011). http://eprint.iacr.org/2011/021. Accessed 25 June 2012.
  44. 44.
    Shoup V.: A proposal for an iso standard for public key encryption. IACR Cryptology ePrint Archive, Report 2001/112 (2001). http://eprint.iacr.org/2001/112. Accessed 25 June 2012.
  45. 45.
    Waters B.: Efficient identity-based encryption without random oracles. In: Advances in Cryptology—EUROCRYPT 2005. Lecture Notes in Computer Science, vol. 3494, pp. 114–127. Springer, Berlin (2005).Google Scholar
  46. 46.
    Zhang R., Imai H.: Generic combination of public key encryption with keyword search and public key encryption. In: Wang H., Xing C. (eds.) Cryptology and Network Security, 6th International Conference, CANS 2007. Lecture Notes in Computer Science, vol. 4856, pp. 159–174. Springer, Berlin (2007).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yu Chen
    • 1
  • Jiang Zhang
    • 2
  • Dongdai Lin
    • 1
  • Zhenfeng Zhang
    • 2
  1. 1.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.Trusted Computing and Information Assurance Laboratory, Institute of SoftwareChinese Academy of SciencesBeijingChina

Personalised recommendations