Skip to main content
Log in

Perfect codes in the discrete simplex

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We study the problem of existence of (nontrivial) perfect codes in the discrete \( n \)-simplex \( \Delta _{\ell }^n := \left\{ \left( \begin{array}{l} x_0, \ldots , x_n \end{array}\right) : x_i \in {\mathbb {Z}}_{+}, \sum _i x_i = \ell \right\} \) under \( \ell _1 \) metric. The problem is motivated by the so-called multiset codes, which have recently been introduced by the authors as appropriate constructs for error correction in the permutation channels. It is shown that \( e \)-perfect codes in the 1-simplex \( \Delta _{\ell }^1 \) exist for any \( \ell \ge 2e + 1 \), the 2-simplex \( \Delta _{\ell }^2\) admits an \( e \)-perfect code if and only if \( \ell = 3e + 1 \), while there are no perfect codes in higher-dimensional simplices. In other words, perfect multiset codes exist only over binary and ternary alphabets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In the graph theoretic literature, 1-perfect codes are also known as efficient dominating sets (see, e.g., [4]).

References

  1. Aigner M.: Combinatorial Theory. Springer, New York (1979).

  2. AlBdaiwi B., Horak P., Milazzo L.: Enumerating and decoding perfect linear Lee codes. Des. Codes Cryptogr. 52(2), 155–162 (2009).

    Google Scholar 

  3. Astola J.: On perfect Lee codes over small alphabets of odd cardinality. Discret. Appl. Math. 4, 227–228 (1982).

    Google Scholar 

  4. Bange D.W., Barkauskas A.E., Slater P.J.: Efficient dominating sets in graphs. In: Ringeisen R.D., Roberts F.S. (eds.) Applications of Discrete Mathematics, pp. 189–199. SIAM, Philadelphia (1988).

  5. Bertsekas D.P., Gallager R.: Data Networks, 2nd edn. Prentice Hall, Englewood Cliffs (1992).

  6. Best M.R.: Perfect codes hardly exist. IEEE Trans. Inf. Theory 29(3), 349–351 (1983).

    Google Scholar 

  7. Biggs N.: Perfect codes in graphs. J. Comb. Theory B 15(3), 289–296 (1973).

    Google Scholar 

  8. Bours P.A.H.: On the construction of perfect deletion-correcting codes using design theory. Des. Codes Cryptogr. 6(1), 5–20 (1995).

    Google Scholar 

  9. Chihara L.: On the zeros of the Askey–Wilson polynomials, with applications to coding theory. SIAM J. Math. Anal. 18(1), 191–207 (1987).

    Google Scholar 

  10. Cohen G., Honkala I., Litsyn S., Lobstein A.: Covering Codes. Elsevier, Amsterdam (1997).

  11. Delsarte P.: An algebraic approach to association schemes and coding theory. Philips J. Res. 10, 1–97 (1973).

    Google Scholar 

  12. Etzion T.: On the nonexistence of perfect codes in the Johnson scheme. SIAM J. Discret. Math. 9(2), 201–209 (1996).

    Google Scholar 

  13. Etzion T.: Configuration distribution and designs of codes in the Johnson scheme. J. Comb. Des. 15(1), 15–34 (2007).

    Google Scholar 

  14. Etzion T.: Product constructions for perfect Lee codes. IEEE Trans. Inf. Theory 57(11), 7473–7481 (2011).

    Google Scholar 

  15. Etzion T., Schwartz M.: Perfect constant-weight codes. IEEE Trans. Inf. Theory 50(9), 2156–2165 (2004).

    Google Scholar 

  16. Etzion T., Vardy A.: Perfect binary codes: constructions, properties, and enumeration. IEEE Trans. Inf. Theory 40(3), 754–763 (1994).

    Google Scholar 

  17. Etzion T., Vardy A.: Error-correcting codes in projective space. IEEE Trans. Inf. Theory 57(2), 1165–1173 (2011).

    Google Scholar 

  18. Gadouleau M., Goupil A.: Binary codes for packet error and packet loss correction in store and forward. In: Proceedings of the International ITG Conference on Source and Channel Coding, Siegen, Germany (2010)

  19. Gadouleau M., Goupil A.: A matroid framework for noncoherent random network communications. IEEE Trans. Inf. Theory 57(2), 1031–1045 (2011).

    Google Scholar 

  20. Golomb S.W., Welch L.R.: Perfect codes in the Lee metric and the packing of polyominoes. SIAM J. Appl. Math. 18(2), 302–317 (1970).

    Google Scholar 

  21. Gordon D.M.: Perfect single error-correcting codes in the Johnson scheme. IEEE Trans. Inf. Theory 52(10), 4670–4672 (2006).

    Google Scholar 

  22. Horak P.: Tilings in Lee metric. Eur. J. Comb. 30(2), 480–489 (2009).

    Google Scholar 

  23. Horak P.: On perfect Lee codes. Discret. Math. 309(18), 5551–5561 (2009).

    Google Scholar 

  24. Kötter R., Kschischang F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2008).

    Google Scholar 

  25. Kovačević M., Vukobratović D.: Subset codes for packet networks. IEEE Commun. Lett. 17(4), 729–732 (2013).

    Google Scholar 

  26. Kovačević M., Vukobratović D.: Multiset codes for permutation channels. Available online at: arXiv:1301.7564.

  27. Levenshtein V.I.: On perfect codes in deletion and insertion metric. Discret. Math. Appl. 2(3), 241–258 (1992).

    Google Scholar 

  28. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).

  29. Martin W.J., Zhu X.J.: Anticodes for the Grassmann and bilinear forms graphs. Des. Codes Cryptogr. 6(1), 73–79 (1995).

    Google Scholar 

  30. Post K.A.: Nonexistence theorem on perfect Lee codes over large alphabets. Inf. Control 29(4), 369–380 (1975).

    Google Scholar 

  31. Roos C.: A note on the existence of perfect constant weight codes. Discret. Math. 47, 121–123 (1983).

    Google Scholar 

  32. Shimabukuro O.: On the nonexistence of perfect codes in \( J(2w + p2, w)\). Ars Comb. 75, 129–134 (2005).

    Google Scholar 

  33. Špacapan S.: Non-existence of face-to-face four dimensional tiling in the Lee metric. Eur. J. Comb. 28(1), 127–133 (2007).

    Google Scholar 

  34. Tietäväinen A.: On the nonexistence of perfect codes over finite fields. SIAM J. Appl. Math. 24(1), 88–96 (1973).

    Google Scholar 

  35. van Lint J. H.: Nonexistence theorems for perfect error-correcting codes. In: Computers in Algebra and Number Theory, vol. IV, SIAM-AMS Proceedings (1971).

  36. Zinoviev V.A., Leontiev V.K.: The nonexistence of perfect codes over Galois fields. Probl. Control Inf. Theory 2, 123–132 (1973).

    Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the reviewers for a detailed reading and many useful comments on the original version of the manuscript. This work was supported by the Ministry of Science and Technological Development of the Republic of Serbia (Grants TR32040 and III44003). Part of the work was done while M. Kovačević was visiting Aalborg University, Denmark, under the support of the COST action IC1104. He is very grateful to the Department of Electronic Systems, and in particular to Čedomir Stefanović and Petar Popovski, for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mladen Kovačević.

Additional information

Communicated by P. Charpin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovačević, M., Vukobratović, D. Perfect codes in the discrete simplex. Des. Codes Cryptogr. 75, 81–95 (2015). https://doi.org/10.1007/s10623-013-9893-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-013-9893-5

Keywords

Mathematics Subject Classification

Navigation