Designs, Codes and Cryptography

, Volume 74, Issue 3, pp 673–680 | Cite as

New extremal binary self-dual codes of length 64 from \(R_3\)-lifts of the extended binary Hamming code

  • Suat Karadeniz
  • Bahattin YildizEmail author


In this paper, we use the graded ring construction to lift the extended binary Hamming code of length 8 to \(R_k\). Using this method we construct self-dual codes over \(R_3\) of length 8 whose Gray images are self-dual binary codes of length 64. In this way, we obtain twenty six non-equivalent extremal binary Type I self-dual codes of length 64, ten of which have weight enumerators that were not previously known to exist. The new codes that we found have \(\beta = 1, 5, 13, 17, 21, 25, 29, 33, 41\) and 52 in \(W_{64,2}\) and they all have automorphism groups of size 8.


Lee weight Gray maps Extremal self-dual codes Projections Lifts  Codes over rings 

Mathematics Subject Classification

94B05 94B65 



The authors would like to thank the anonymous referees for their valuable remarks and suggestions that improved the presentation of the paper considerably.


  1. 1.
    Bosma W., Cannon J., Playoust C.: The magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997).Google Scholar
  2. 2.
    Bouyuklieva S., Yorgov V.: Singly-even self-dual codes of length 40. Des. Codes Cryptogr. 9, 131–141 (1996).Google Scholar
  3. 3.
    Bouyuklieva S.: Some optimal self-orthogonal and self-dual codes. J. Discret. Math. 287, 1–10 (2004).Google Scholar
  4. 4.
    Chigira N., Harada M., Kitazume M.: Extremal self-dual codes of length 64 through neighbors and covering radii. Des. Codes Cryptogr. 42, 93–101 (2007).Google Scholar
  5. 5.
    Conway J.H., Sloane N.J.A.: A new upper bound on the minimal distance of self-dual codes. IEEE Trans. Inf. Theory 36(6), 1319–1333 (1990).Google Scholar
  6. 6.
    Dougherty S.T., Gaborit P., Harada M., Solé P.: Type II codes over \({\mathbb{F}}_2+u{\mathbb{F}}_2\). IEEE Trans. Inf. Theory 45(1), 32–45 (1999).Google Scholar
  7. 7.
    Dougherty S.T., Mesnager S., Solé P.: Secret sharing scehmes based on self-dual codes. In: Proceedings of IEEE Information Theory Workshop, ITW, Porto (2008).Google Scholar
  8. 8.
    Dougherty S.T., Kim J.L., Kulosman H., Liu H.: Self-dual codes over commutative Frobenius rings. Finite Fields Appl. 16, 14–26 (2010).Google Scholar
  9. 9.
    Dougherty S.T., Yildiz B., Karadeniz S.: Codes over \(R_k\), gray maps and their binary images. Finite Fields Appl. 17(3), 205–219 (2011).Google Scholar
  10. 10.
    Dougherty S., Yildiz B., Karadeniz S.: Self-dual codes over \(R_k\) and binary self-dual codes. Eur. J. Pure Appl. Math. 6(1), 89–106 (2013).Google Scholar
  11. 11.
    Gaborit P., Otmani A.: Experimental constructions of self-dual codes. Finite Fields Appl. 9, 372–394 (2003).Google Scholar
  12. 12.
    Harada M., Gulliver T.A., Kaneta H.: Classification of extremal double-circulant self-dual codes of length up to 62. Discret. Math. 188, 127–136 (1998).Google Scholar
  13. 13.
    Harada M., Munemasa A., Tanabe K.: Extremal self-dual [40,20,8] codes with covering radius 7. Finite Fields Appl. 10, 183–197 (2004).Google Scholar
  14. 14.
    Harada M., Kiermaier M., Wasserman A., Yorgova R.: New binary singly even self-dual codes. IEEE Trans. Inf. Theory 56(4), 1612–1617 (2010).Google Scholar
  15. 15.
    Karadeniz S., Kaya A.: New extremal binary self-dual codes of length 58 as \(R3\)-lifts from the shortened \([8,4,4]\) binary Hamming code. J. Franklin Inst. 349(9), 2824–2833 (2012).Google Scholar
  16. 16.
    Karadeniz S., Yildiz B.: Double-circulant and double-bordered-circulant constructions for self-dual codes over \(R_2\). Adv. Math. Commun. 6(2), 193–202 (2012).Google Scholar
  17. 17.
    Nishimura T.: A new extremal self-dual code of length 64. IEEE Trans. Inf. Theory 50(9), 2173–2174 (2004).Google Scholar
  18. 18.
    Rains E.M.: Shadow bounds for self dual codes. IEEE Trans. Inf. Theory 44, 134–139 (1998).Google Scholar
  19. 19.
    Tsai H.P., Shih P.Y., Wuh R.Y., Su W.K., Chen C.H.: Construction of self-dual codes. IEEE Trans. Inf. Theory 54(8), 3826–3831 (2008).Google Scholar
  20. 20.
    Wood J.: Duality for modules over finite rings and applications to coding theory. Am. J. Math. 121, 555–575 (1999).Google Scholar
  21. 21.
  22. 22.
    Yildiz B., Karadeniz S.: Linear codes over \({\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2\). Des. Codes Cryptogr. 54(1), 61–81 (2010).Google Scholar
  23. 23.
    Yildiz B., Karadeniz S.: Self-dual codes over \({\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2\). J. Franklin Inst. 347(10), 1888–1894 (2010).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsFatih UniversityIstanbulTurkey

Personalised recommendations