Advertisement

Designs, Codes and Cryptography

, Volume 74, Issue 3, pp 681–701 | Cite as

On generator matrices and parity check matrices of generalized integer codes

  • Hajime MatsuiEmail author
Article

Abstract

Generalized integer codes are defined as codes over rings of integers modulo \(n\) in which individual code symbols generally have different moduli. In this paper, we use a certain type of matrix identities to derive a necessary and sufficient condition for integer matrices to be equal to the generator matrices of generalized integer codes. Moreover, it is shown that the parity check matrix is generated from this matrix identity of the generator matrix. We also show the close connection between the listing of a certain type of integer codes and Hecke rings. Finally, an efficient algorithm that enumerates theoretically all of the generator matrices of generalized integer codes is provided.

Keywords

Codes over rings Elementary divisors Extended Euclidean algorithm Bézout’s identity Integer lattices  Hecke rings 

Mathematics Subject Classification

94B05 94B25 94B40 94B60 11T71 

Notes

Acknowledgments

This work was partly supported by KAKENHI, Grant-in-Aid for Scientific Research C, 23560478. The author would like to thank the anonymous referees for their helpful comments which improved the final presentation of the paper.

References

  1. 1.
    Bhaintwal M., Wasan S.K.: On quasi-cyclic codes over \(Z_q\). Appl. Algebra Eng. Commun. Comput. 20(5–6), 459–480 (2009).Google Scholar
  2. 2.
    Blake I.: Codes over certain rings. Inf. Control 20(4), 396–404 (1972).Google Scholar
  3. 3.
    Blake I.: Codes over integer residue rings. Inf. Control 29(4), 295–300 (1975).Google Scholar
  4. 4.
    Calderbank A.R., Sloane N.J.A.: Modular and \(p\)-adic cyclic codes. Des. Codes Cryptogr. 6(1), 21–35 (1995).Google Scholar
  5. 5.
    Cao Y.: Structural properties and enumeration of 1-generator generalized quasi-cyclic codes. Des. Codes Cryptogr. 60(1), 67–69 (2010).Google Scholar
  6. 6.
    Chen L., Xu J., Djurdjevic I., Lin S.: Near-Shannon-limit quasi-cyclic low-density parity-check codes. IEEE Trans. Commun. 52(7), 1038–1042 (2004).Google Scholar
  7. 7.
    Esmaeili M., Yari S.: Generalized quasi-cyclic codes: structural properties and code construction. Appl. Algebra Eng. Commun. Comput. 20(2), 159–173 (2009).Google Scholar
  8. 8.
    Fossorier M.P.C.: Quasi-cyclic low density parity check codes from circulant permutation matrices. IEEE Trans. Inf. Theory 50(8), 1788–1793 (2004).Google Scholar
  9. 9.
    Han Vinck A.J., Morita H.: Codes over the ring of integers modulo m. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E81-A(10), 2013–2018 (1998).Google Scholar
  10. 10.
    Heegard C., Little J., Saints K.: Systematic encoding via Gröbner bases for a class of algebraic geometric Goppa codes. IEEE Trans. Inf. Theory 41(6), 1752–1761 (1995).Google Scholar
  11. 11.
    Huffman W.C.: On the classification and enumeration of self-dual codes. Finite Fields Appl. 11(3), 451–490 (2005).Google Scholar
  12. 12.
    Kamiya N.: High-rate quasi-cyclic low-density parity-check codes derived from finite affine planes. IEEE Trans. Inf. Theory 53(4), 1444–1459 (2007).Google Scholar
  13. 13.
    Kamiya N., Fossorier M.P.C.: Quasi-cyclic codes from a finite affine plane. Des. Codes Cryptogr. 38(3), 311–329 (2006).Google Scholar
  14. 14.
    Kostadinov H., Morita H., Manev N.: Integer codes correcting single errors of specific types \((\pm e_1,\pm e_2,...,\pm e_s)\). IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E86-A(7), 1843–1849 (2003).Google Scholar
  15. 15.
    Kostadinov H., Morita H., Manev N.: Derivation on bit error probability of coded QAM using integer codes. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E87-A(12), 3397–3403 (2004).Google Scholar
  16. 16.
    Kostadinov H., Morita H., Iijima N., Han Vinck A.J., Manev N.: Soft decoding of integer codes and their application to coded modulation. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E93-A(7), 1363–1370 (2010).Google Scholar
  17. 17.
    Kou Y., Lin S., Fossorier M.P.C.: Low density parity check codes based on finite geometries: a rediscovery and new results. IEEE Trans. Inf. Theory 47(7), 2711–2761 (2001).Google Scholar
  18. 18.
    Lally K., Fitzpatrick P.: Algebraic structure of quasi-cyclic codes. Discret. Appl. Math. 111(1–2), 157–175 (2001).Google Scholar
  19. 19.
    Lin S., Costello D.J.: Error Control Coding: Fundamentals and Applications, 2nd edn. Prentice-Hall, Englewood Cliffs (2004).Google Scholar
  20. 20.
    Ling S., Solé P.: On the algebraic structure of quasi-cyclic codes I: finite fields. IEEE Trans. Inf. Theory 47(7), 2751–2760 (2001).Google Scholar
  21. 21.
    Ling S., Solé P.: On the algebraic structure of quasi-cyclic codes II: chain rings. Des. Codes Cryptogr. 30(1), 113–130 (2003).Google Scholar
  22. 22.
    Ling S., Solé P.: On the algebraic structure of quasi-cyclic codes III: generator theory. IEEE Trans. Inf. Theory 51(7), 2692–2700 (2005).Google Scholar
  23. 23.
    Ling S., Niederreiter H., Solé P.: On the algebraic structure of quasi-cyclic codes IV: repeated roots. Des. Codes Cryptogr. 38(3), 337–361 (2006).Google Scholar
  24. 24.
    MacWilliams F.J., Sloane N.J.A.: The Theory of Error Correcting Codes, 9th edn. Elsevier, North Holland (1988).Google Scholar
  25. 25.
    Matsui H.: On polynomial generator matrices of generalized quasi-cyclic codes. In: 6th Asia-Europe Workshop on Information Theory, Ishigaki Island, Okinawa, Japan, 22–24 Oct 2010.Google Scholar
  26. 26.
    Nakamura K.: A class of error-correcting codes for DPSK channels. In: IEEE International Conference on Communications, Boston, MA, June 10–14 1979, pp. 45.4.1–45.4.5.Google Scholar
  27. 27.
    Nebe G., Rains E.M., Sloane N.J.A.: Self-Dual Codes and Invariant Theory. Springer, Berlin (2006).Google Scholar
  28. 28.
    Roth R.M.: Introduction to Coding Theory. Cambridge University Press, Cambridge (2005).Google Scholar
  29. 29.
    Séguin G.E.: A class of 1-generator quasi-cyclic codes. IEEE Trans. Inf. Theory 50(8), 1745–1753 (2004).Google Scholar
  30. 30.
    Serre J.-P.: A Course in Arithmetic. Springer, Berlin (1973).Google Scholar
  31. 31.
    Shimura G.: Introduction to the Arithmetic Theory of Automorphic Functions. Princeton University Press, Princeton (1971).Google Scholar
  32. 32.
    Siap I., Kulhan N.: The structure of generalized quasi-cyclic codes. Appl. Math. E-Notes 5, 24–30 (2005).Google Scholar
  33. 33.
    Solé P. (ed.): Codes over Rings. In: Proceedings of the Cimpa Summer School, Ankara, Turkey, 18–29 Aug 2008.Google Scholar
  34. 34.
    Spiegel E.: Codes over \(\text{ Z }_m\). Inf. Control 35(1), 48–51 (1977).Google Scholar
  35. 35.
    Tang H., Xu J., Lin S., Abdel-Ghaffar K.A.S.: Codes on finite geometries. IEEE Trans. Inf. Theory 51(2), 572–596 (2005).Google Scholar
  36. 36.
    Van V.T., Matsui H., Mita S.: Computation of Gröbner basis for systematic encoding of generalized quasi-cyclic codes. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E92-A(9), 2345–2359 (2009).Google Scholar
  37. 37.
    Van V.T., Matsui H., Mita S.: A class of generalized quasi-cyclic LDPC codes: high-rate and low-complexity encoder for data storage devices. In: IEEE Global Communications Conference (GLOBECOM), Miami, FL, 2010, pp. 6–10.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Toyota Technological InstituteNagoyaJapan

Personalised recommendations