Designs, Codes and Cryptography

, Volume 74, Issue 3, pp 645–663 | Cite as

Building blockcipher from small-block tweakable blockcipher

  • Kazuhiko MinematsuEmail author


How to build a secure blockcipher is one of the central problems in symmetric cryptography. While the popular approach, initiated by the seminal paper of Luby and Rackoff, is based on a pseudorandom function, Minematsu (in: Dunkelman (ed.) FSE, 2009) and Minematsu and Iwata (in: Chen (ed.) IMA, 2011) proposed different schemes to efficiently achieve a better security. The point of these works is that they use tweakable blockcipher (TBC) as an internal module rather than pseudorandom function. This paper further extends the previous schemes and considers the case that the target blockcipher has much larger block size than that of the TBC we use. Assuming the tweak of TBC is long, we propose a scheme similar to unbalanced Feistel cipher that achieves stronger security than the previous schemes of Minematsu and Minematsu-Iwata. We also present a blockcipher-based instantiation of our scheme for the encryption over some unusual domains, such as decimal space, as a typical problem of format-preserving encryption.


Tweakable blockcipher Mode of operation Pseudorandomness  Format-preserving encryption 

Mathematics Subject Classification

94A60 68P25 


  1. 1.
    Shannon C.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949).Google Scholar
  2. 2.
    Luby M., Rackoff C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988).Google Scholar
  3. 3.
    Goldreich O.: Modern Cryptography, Probabilistic Proofs, and Pseudorandomness. Springer, New York (1998).Google Scholar
  4. 4.
    Patarin J.: Security of random Feistel schemes with 5 or more rounds. In: Franklin M.K. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 3152, pp. 106–122. Springer, Heidelberg (2004).Google Scholar
  5. 5.
    Maurer U.M., Pietrzak K.: The security of many-round Luby–Rackoff pseudo-random permutations. In: Biham E. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 2656, pp. 544–561. Springer, Heidelberg (2003).Google Scholar
  6. 6.
    Morris B., Rogaway P., Stegers T.: How to encipher messages on a small domain. In: Halevi S. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 5677, pp. 286–302. Springer, Berlin, Heidelberg (2009).Google Scholar
  7. 7.
    Naor M., Reingold O.: On the construction of pseudorandom permutations: Luby–Rackoff revisited. J. Cryptol. 12(1), 29–66 (1999).Google Scholar
  8. 8.
    Minematsu K.: Beyond-birthday-bound security based on tweakable block cipher. In: Dunkelman O. (ed.) FSE. Lecture Notes in Computer Science, vol. 5665, pp. 308–326. Springer, Berlin, Heidelberg (2009).Google Scholar
  9. 9.
    Liskov M., Rivest R.L., Wagner D.: Tweakable block ciphers. In: Yung M. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 2442, pp. 31–46. Springer, Berlin (2002).Google Scholar
  10. 10.
    Skein Hash Function. SHA-3 Submission, (2008). Accessed 25 Sept 2013.
  11. 11.
    Rogaway P.: Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC. In: Lee P.J. (ed.) ASIACRYPT. Lecture Notes in Computer Science, vol. 3329, pp. 16–31. Springer, Heidelberg (2004).Google Scholar
  12. 12.
    Rogaway P., Zhang H.: Online ciphers from tweakable blockciphers. In: Kiayias A. (ed.) CT-RSA. Lecture Notes in Computer Science, vol. 6558, pp. 237–249. Springer, Berlin (2011).Google Scholar
  13. 13.
    Coron J.S., Dodis Y., Mandal A., Seurin Y.: A domain extender for the ideal cipher. In: Micciancio D. (ed.) TCC. Lecture Notes in Computer Science, vol. 5978, pp. 273–289. Springer, Heidelberg (2010).Google Scholar
  14. 14.
    Minematsu K., Iwata T.: Building blockcipher from tweakable blockcipher: extending FSE 2009 proposal. In: Chen L. (ed.) IMA International Conference. Lecture Notes in Computer Science, vol. 7089, pp. 391–412. Springer, Berlin (2011).Google Scholar
  15. 15.
    Schneier B., Kelsey J.: Unbalanced Feistel networks and block cipher design. In: Gollmann D. (ed.) FSE. Lecture Notes in Computer Science, vol. 1039, pp. 121–144. Springer, Heidelberg (1996).Google Scholar
  16. 16.
    Halevi S., Rogaway P.: A tweakable enciphering mode. In: Boneh D. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 2729, pp. 482–499. Springer, Heidelberg (2003).Google Scholar
  17. 17.
    Bellare M., Ristenpart T., Rogaway P., Stegers T.: Format-preserving encryption. In: Jacobson Jr M.J., Rijmen V., Safavi-Naini R. (eds.) Selected Areas in Cryptography. Lecture Notes in Computer Science, vol. 5867, pp. 295–312. Springer, Berlin, Heidelberg (2009).Google Scholar
  18. 18.
    Visa Best Practices for Tokenization Version 1.0, Accessed 25 Sept 2013.
  19. 19.
    Maurer U.M.: Indistinguishability of random systems. In: Knudsen L.R. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 2332, pp. 110–132. Springer, Berlin (2002).Google Scholar
  20. 20.
    Jetchev D., Özen O., Stam M.: Understanding adaptivity: random systems revisited. In: Wang X., Sako K. (eds.) ASIACRYPT. Lecture Notes in Computer Science, vol. 7658, pp. 313–330. Springer, Berlin, Heidelberg (2012).Google Scholar
  21. 21.
    Bellare M., Rogaway P., Spies T.: The FFX mode of operation for format-preserving encryption, (2010). Accessed 25 Sept 2013.
  22. 22.
    Bellare M., Desai A., Jokipii E., Rogaway P.: A concrete security treatment of symmetric encryption. In: FOCS, pp. 394–403. IEEE Computer Society, Los Alamitos (1997).Google Scholar
  23. 23.
    Schroeppel R.: Hasty pudding cipher. AES Submission, (1998). Accessed 25 Sept 2013.
  24. 24.
    Crowley P.: Mercy: a fast large block cipher for disk sector encryption. In: Schneier B. (ed.) FSE. Lecture Notes in Computer Science, vol. 1978, pp. 49–63. Springer, New York (2000).Google Scholar
  25. 25.
    Fluhrer S.R.: Cryptanalysis of the Mercy block cipher. In: Matsui M. (ed.) FSE. Lecture Notes in Computer Science, vol. 2355, pp. 28–36. Springer, Berlin, Heidelberg (2001).Google Scholar
  26. 26.
    Minematsu K.: Improved security analysis of XEX and LRW modes. In: Biham E., Youssef A.M. (eds.) Selected Areas in Cryptography. Lecture Notes in Computer Science, vol. 4356, pp. 96–113. Springer, Berlin (2006).Google Scholar
  27. 27.
    Bellare M., Krovetz T., Rogaway P.: Luby–Rackoff backwards: increasing security by making block ciphers non-invertible. In: Nyberg K. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 1403, pp. 266–280. Springer, Heidelberg (1998).Google Scholar
  28. 28.
    Landecker W., Shrimpton T., Terashima R.S.: Tweakable blockciphers with beyond birthday-bound security. In: Safavi-Naini R., Canetti R. (eds.) CRYPTO. Lecture Notes in Computer Science, vol. 7417, pp. 14–30. Springer, Berlin, Heidelberg (2012).Google Scholar
  29. 29.
    Lampe R., Seurin Y.: Tweakable blockciphers with asymptotically optimal security. In: Pre-proceedings of Fast Software Encryption (2013).Google Scholar
  30. 30.
    Gladman B.: Accessed 25 Sept 2013.
  31. 31.
    Brier E., Peyrin T., Stern J.: BPS: a format-preserving encryption proposal, (2010). Accessed 25 Sept 2013.
  32. 32.
    Fisher-Yates Shuffle. Wikipedia Entry, Accessed 25 Sept 2013.
  33. 33.
    Vance J.: VAES3 scheme for FFX: An addendum to “The FFX Mode of Operation for Format-Preserving Encryption”. NIST CSRC, (2011). Accessed 25 Sept 2013.
  34. 34.
    Granboulan L., Pornin T.: Perfect block ciphers with small blocks. In: Biryukov A. (ed.) FSE. Lecture Notes in Computer Science, vol. 4593, pp. 452–465. Springer, Heidelberg (2007).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.NEC CorporationNakahara-Ku, KawasakiJapan

Personalised recommendations