Skip to main content
Log in

Evaluation codes defined by finite families of plane valuations at infinity

Designs, Codes and Cryptography Aims and scope Submit manuscript

Cite this article

Abstract

We construct evaluation codes given by weight functions defined over polynomial rings in m ≥ 2 indeterminates. These weight functions are determined by sets of m−1 weight functions over polynomial rings in two indeterminates defined by plane valuations at infinity. Well-suited families in totally ordered commutative groups are an important tool in our procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abhyankar S.S.: Local uniformization on algebraic surfaces over ground field of characteristic p ≠ 0. Ann. Math. 63, 491–526 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abhyankar S.S.: On the valuations centered in a local domain. Am. J. Math. 78, 321–348 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  3. Abhyankar S.S.: Lectures on expansion techniques in algebraic geometry. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 57. Tata Institute of Fundamental Research, Bombay (1977).

  4. Abhyankar S.S.: On the semigroup of a meromorphic curve (part I). In: Proceedings of the International Symposium on Algebraic Geometry (Kyoto) Kinokunio Tokio, pp. 249–414 (1977).

  5. Abhyankar S.S., Moh T.T.: Newton-Puiseux expansion and generalized Tschirnhausen transformation (I). J. Reine Angew. Math. 260, 47–83 (1973)

    MATH  MathSciNet  Google Scholar 

  6. Abhyankar S.S., Moh T.T.: Newton-Puiseux expansion and generalized Tschirnhausen transformation (II). J. Reine Angew. Math. 261, 29–54 (1973)

    MathSciNet  Google Scholar 

  7. Berlekamp E.R.: Algebraic Coding Theory. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  8. Campillo A., Farrán J.I.: Computing Weierstrass semigroups and the Feng-Rao distance from singular plane models. Finite Fields Appl. 6, 71–92 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Carvalho C., Munuera C., Silva E., Torres F.: Near orders and codes. IEEE Trans. Inf. Theory 53, 1919–1924 (2007)

    Article  Google Scholar 

  10. Decker W., Greuel G.M., Pfister G., Schöenemann H.: Singular 3.1.3, a computer algebra system for polynomial computations (2011) http://www.singular.uni-kl.de.

  11. Feng G.L., Rao T.R.N.: Decoding of algebraic geometric codes up to the designed minimum distance. IEEE Trans. Inf. Theory 39, 37–45 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Feng G.L., Rao T.R.N.: A simple approach for construction of algebraic-geometric codes from affine plane curves. IEEE Trans. Inf. Theory 40, 1003–1012 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Feng G.L., Rao T.R.N.: Improved geometric Goppa codes, part I: basic theory. IEEE Trans. Inf. Theory 41, 1678–1693 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fujimoto M., Suzuki M.: Construction of affine plane curves with one place at infinity. Osaka J. Math. 39(4), 1005–1027 (2002)

    MATH  MathSciNet  Google Scholar 

  15. Galindo C.: Plane valuations and their completions. Commun. Algebra 23(6), 2107–2123 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Galindo C., Monserrat F.: δ-sequences and evaluation codes defined by plane valuations at infinity. Proc. Lond. Math. Soc. 98, 714–740 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Galindo C., Monserrat F.: The Abhyankar-Moh theorem for plane valuations at infinity. Preprint 2010. ArXiv:0910.2613v2.

  18. Galindo C., Sanchis M.: Evaluation codes and plane valuations. Des. Codes Cryptogr. 41(2), 199–219 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Geil O.: Codes based on an \({\mathbb{F}_q}\)-algebra. PhD Thesis, Aalborg University, June (2000).

  20. Geil O., Matsumoto R.: Generalized Sudan’s list decoding for order domain codes. Lecture Notes in Computer Science, vol. 4851, pp. 50–59 (2007)

  21. Geil O., Pellikaan R.: On the structure of order domains. Finite Fields Appl. 8, 369–396 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Goppa V.D.: Codes associated with divisors. Probl. Inf. Transm. 13, 22–26 (1997)

    Google Scholar 

  23. Goppa V.D.: Geometry and Codes. Mathematics and Its Applications, vol. 24. Kluwer, Dordrecht (1991).

  24. Greco S., Kiyek K.: General elements in complete ideals and valuations centered at a two-dimensional regular local ring. In: Algebra, Arithmetic, and Geometry, with Applications, pp. 381–455. Springer, Berlin (2003).

  25. Høholdt T., van Lint J.H., Pellikaan R.: Algebraic geometry codes. In: Handbook of Coding Theory, vol. 1, pp. 871–961. Elsevier, Amsterdam (1998).

  26. Jensen C.D.: Fast decoding of codes from algebraic geometry. IEEE Trans. Inf. Theory 40, 223–230 (1994)

    Article  Google Scholar 

  27. Justesen J., Larsen K.J., Jensen H.E., Havemose A., Høholdt T.: Construction and decoding of a class of algebraic geometric codes. IEEE Trans. Inf. Theory 35, 811–821 (1989)

    Article  MATH  Google Scholar 

  28. Justesen J., Larsen K.J., Jensen H.E., Høholdt T.: Fast decoding of codes from algebraic plane curves. IEEE Trans. Inf. Theory 38, 111–119 (1992)

    Article  MATH  Google Scholar 

  29. Massey J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory 15, 122–127 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  30. Matsumoto R.: Miura’s generalization of one point AG codes is equivalent to Høholdt, van Lint and Pellikaan’s generalization. IEICE Trans. Fundam. E82-A(10), 2007–2010 (1999)

    Google Scholar 

  31. Moghaddam M.: Realization of a certain class of semigroups as value semigroups of valuations. Bull. Iran. Math. Soc. 35, 61–95 (2009)

    MATH  MathSciNet  Google Scholar 

  32. O’Sullivan M.E.: Decoding of codes defined by a single point on a curve. IEEE Trans. Inf. Theory 41, 1709–1719 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  33. O’Sullivan M.E.: New codes for the Belekamp-Massey-Sakata algorithm. Finite Fields Appl. 7, 293–317 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  34. Pinkham H.: Séminaire sur les singularités des surfaces (Demazure-Pinkham-Teissier), Course donné au Centre de Math. de l’Ecole Polytechnique (1977–1978).

  35. Sakata S.: Extension of the Berlekamp-Massey algorithm to N dimensions. Inf. Comput. 84, 207–239 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  36. Sakata S., Jensen H.E., Høholdt T.: Generalized Berlekamp-Massey decoding of algebraic geometric codes up to half the Feng-Rao bound. IEEE Trans. Inf. Theory 41, 1762–1768 (1995)

    Article  MATH  Google Scholar 

  37. Sakata S., Justesen J., Madelung Y., Jensen H.E., Høholdt T.: Fast decoding of algebraic geometric codes up to the designed minimum distance. IEEE Trans. Inf. Theory 41, 1672–1677 (1995)

    Article  MATH  Google Scholar 

  38. Sathaye A.: On planar curves. Am. J. Math. 99(5), 1105–1135 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  39. Shannon C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 and 623–656 (1948).

  40. Skorobogatov A.N., Vlădut S.G.: On the decoding of algebraic geometric codes. IEEE Trans. Inf. Theory 36, 1051–1060 (1990)

    Article  MATH  Google Scholar 

  41. Spivakovsky M.: Valuations in function fields of surfaces. Am. J. Math. 112, 107–156 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  42. Suzuki M.: Affine plane curves with one place at infinity. Ann. Inst. Fourier 49(2), 375–404 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  43. Tsfasman S.G., Vlăduţ T.: Zink, modular curves, Shimura curves and Goppa codes, better than Varshamov–Gilbert bound. Math. Nachr. 109, 21–28 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  44. Vlăduţ S.G., Manin Y.I. Linear codes and modular curves. In: Current problems in mathematics, vol. 25, pp. 209–257. Akad. Nauk SSSR Vseoyuz, Moscow (1984).

  45. Zariski O.: The reduction of the singularities of an algebraic surface. Ann. Math. 40, 639–689 (1939)

    Article  MathSciNet  Google Scholar 

  46. Zariski O.: Local uniformization on algebraic varieties. Ann. Math. 41, 852–896 (1940)

    Article  MathSciNet  Google Scholar 

  47. Zariski O., Samuel P.(1960) Commutative Algebra, vol. II. Springer, Berlin.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Monserrat.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding Theory and Applications”.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Galindo, C., Monserrat, F. Evaluation codes defined by finite families of plane valuations at infinity. Des. Codes Cryptogr. 70, 189–213 (2014). https://doi.org/10.1007/s10623-012-9738-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-012-9738-7

Keywords

Mathematics Subject Classification (2010)

Navigation