Skip to main content
Log in

Complete tree subset difference broadcast encryption scheme and its analysis

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The subset difference (SD) method proposed by Naor, Naor and Lotspiech is the most popular broadcast encryption (BE) scheme. It is suitable for real-time applications like Pay-TV and has been suggested for use by the AACS standard for digital rights management in Blu-Ray and HD-DVD discs. The SD method assumes the number of users to be a power of two. We propose the complete tree subset difference (CTSD) method that allows the system to support an arbitrary number of users. In particular, it subsumes the SD method and all results proved for the CTSD method also hold for the SD method. Recurrences are obtained for the CTSD scheme to count the number, N(n, r, h), of possible ways r users in the system of n users can be revoked to result in a transmission overhead or header length of h. The recurrences lead to a polynomial time dynamic programming algorithm for computing N(n, r, h). Further, they provide bounds on the maximum possible header length. A probabilistic analysis is performed to obtain an O(r log n) time algorithm to compute the expected header length in the CTSD scheme. Further, for the SD scheme we obtain an explicit limiting upper bound on the expected header length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AACS: Advanced Access Content System, http://www.aacsla.com .

  2. Asano T.: A revocation scheme with minimal storage at receivers. In: Zheng Y. (ed.) ASIACRYPT. Lecture Notes in Computer Science, vol. 2501, pp. 433–450. Springer, New York (2002).

  3. Attrapadung N., Kobara K., Imai H.: Sequential key derivation patterns for broadcast encryption and key predistribution schemes. In: Laih, C.-S. (ed.) ASIACRYPT. Lecture Notes in Computer Science, vol. 2894, pp. 374–391. Springer, New York (2003)

    Google Scholar 

  4. Austrin P., Kreitz G.: Lower bounds for subset cover based broadcast encryption. In: Vaudenay, S. (ed) AFRICACRYPT. Lecture Notes in Computer Science, vol. 5023, pp. 343–356. Springer, New York (2008)

    Google Scholar 

  5. Berkovits S.: How to broadcast a secret. In: Davies, D.W. (ed) EUROCRYPT. Lecture Notes in Computer Science, vol. 547, pp. 535–541. Springer, New York (1991)

    Google Scholar 

  6. Boneh D., Franklin M.K.: An efficient public key traitor tracing scheme. In: Wiener, M.J. (eds.) CRYPTO. Lecture Notes in Computer Science, vol. 1666, pp. 338–353. Springer, New York (1999)

    Google Scholar 

  7. Boneh D., Gentry C., Waters B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed) CRYPTO. Lecture Notes in Computer Science, vol. 3621, pp. 258–275. Springer, New York (2005)

    Google Scholar 

  8. Bhattacherjee S., Sarkar P.: An analysis of the Naor-Naor-Lotspiech subset difference algorithm (for possibly incomplete binary trees). In: Augot D., Canteaut A. (eds.) Workshop on Coding and Cryptography, April 11–15, 2011, Workshop on Coding and Cryptography, pp. 483–492. INRIA (2011).

  9. Chor B., Fiat A., Naor M.: Tracing traitors. In: Desmedt, Y. (ed.) CRYPTO Lecture Notes in Computer Science, vol. 839, pp. 257–270. Springer, New York (1994)

    Google Scholar 

  10. Dodis Y., Fazio N.: Public key trace and revoke scheme secure against adaptive chosen ciphertext attack. In: Desmedt, Y. (ed.) Public Key Cryptography. Lecture Notes in Computer Science, vol. 2567, pp. 100–115. Springer, New York (2003)

    Google Scholar 

  11. Eagle C., Omar M., Panario D., Richmond B.: Distribution of the number of encryptions in revocation schemes for stateless receivers. In: Roesler U., Spitzmann J., Ceulemans M.-C. (eds.) Fifth Colloquium on Mathematics and Computer Science. DMTCS Proceedings, vol. AI, pp. 195–206. Discrete Mathematics and Theoretical Computer Science (2008).

  12. Fiat A., Naor M.: Broadcast encryption. In: Stinson, D.R. (ed) CRYPTO Lecture Notes in Computer Science, vol. 773., pp. 480–491. Springer, New York (1993)

    Google Scholar 

  13. Fiat A., Tassa T.: Dynamic traitor tracing. J. Cryptol. 14(3), 211–223 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Gentry C., Waters B.: Adaptive security in broadcast encryption systems (with short ciphertexts). In: Joux, A. (ed) EUROCRYPT. Lecture Notes in Computer Science, vol. 5479, pp. 171–188. Springer, New York (2009)

    Google Scholar 

  15. Goodrich M.T., Sun J.Z., Tamassia R.: Efficient tree-based revocation in groups of low-state devices. In: Franklin, M.K. (ed) CRYPTO. Lecture Notes in Computer Science, vol. 3152, pp. 511–527. Springer, New York (2004)

    Google Scholar 

  16. Halevy D., Shamir A.: The LSD broadcast encryption scheme. In: Yung, M. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 2442, pp. 47–60. Springer, New York (2002)

    Google Scholar 

  17. Jho N.-S., Hwang J.Y., Cheon J.H., Kim M.-H., Lee D.H., Yoo E.S.: One-way chain based broadcast encryption schemes. In: Cramer, R. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 3494, pp. 559–574. Springer, New York (2005)

    Google Scholar 

  18. Jiang S., Gong G.: Multi-service oriented broadcast encryption. In: Wang, H., Pieprzyk, J., Varadharajan, V. (ed.) ACISP. Lecture Notes in Computer Science, vol. 3108, pp. 1–11. Springer, New York (2004)

    Google Scholar 

  19. Kiayias A., Yung M.: Self protecting pirates and black-box traitor tracing. In: Kilian, J. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 2139, pp. 63–79. Springer, New York (2001)

    Google Scholar 

  20. Liu Y.-R., Tzeng W.-G.: Public key broadcast encryption with low number of keys and constant decryption time. In: Cramer, R. (ed.) Public Key Cryptography. Lecture Notes in Computer Science, vol. 4939, pp. 380–396. Springer, New York (2008)

    Google Scholar 

  21. Luby M., Staddon J.: Combinatorial bounds for broadcast encryption. In: Nyberg, K. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 1403, pp. 512–526. Springer, New York (1998)

    Google Scholar 

  22. Martin T., Martin K.M., Wild P.R.: Establishing the broadcast efficiency of the subset difference revocation scheme. Des. Codes Cryptogr. 51(3), 315–334 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Naor M., Pinkas B.: Threshold traitor tracing. In: Krawczyk, H. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 1462, pp. 502–517. Springer, New York (1998)

    Google Scholar 

  24. Naor D., Naor M., Lotspiech J.: Revocation and tracing schemes for stateless receivers. In: Kilian, J. (ed.) CRYPTO.Lecture Notes in Computer Science, vol. 2139, pp. 41–62. Springer, New York (2001)

    Google Scholar 

  25. Park E.C., Blake I.F.: On the mean number of encryptions for tree-based broadcast encryption schemes. J. Discret. Algorithms 4(2), 215–238 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Padró C., Gracia I., Molleví S.M., Morillo P.: Linear key predistribution schemes. Des. Codes Cryptogr. 25(3), 281–298 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Padró C.: Gracia I., Molleví S.M., Morillo P.: Linear broadcast encryption schemes. Discret. Appl. Math. 128(1), 223–238 (2003)

    Article  MATH  Google Scholar 

  28. Padró C., Gracia I., Molleví S.M.: Improving the trade-off between storage and communication in broadcast encryption schemes. Discret. Appl. Math. 143(1–3), 213–220 (2004)

    Article  MATH  Google Scholar 

  29. Phan D.H., Pointcheval D., Strefler M.: Security notions for broadcast encryption. In: Lopez, J., Tsudik, G. (ed.) ACNS. Lecture Notes in Computer Science, vol. 6715, pp. 377–394. Springer, New York (2011)

    Google Scholar 

  30. Silverberg A., Staddon J., Walker J.L.: Efficient traitor tracing algorithms using list decoding. In: Boyd, C. (ed.) ASIACRYPT Lecture Notes in Computer Science, vol. 2248., pp. 175–192. Springer, New York (2001)

    Google Scholar 

  31. Stinson D.R.: On some methods for unconditionally secure key distribution and broadcast encryption. Des. Codes Cryptogr. 12(3), 215–243 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stinson D.R., Wei R.: Combinatorial properties and constructions of traceability schemes and frameproof codes. SIAM J. Discret. Math. 11(1), 41–53 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Bhattacherjee.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacherjee, S., Sarkar, P. Complete tree subset difference broadcast encryption scheme and its analysis. Des. Codes Cryptogr. 66, 335–362 (2013). https://doi.org/10.1007/s10623-012-9702-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-012-9702-6

Keywords

Mathematics Subject Classification (2010)

Navigation