Skip to main content
Log in

Weighted Reed–Muller codes revisited

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We consider weighted Reed–Muller codes over point ensemble S 1 × · · · × S m where S i needs not be of the same size as S j . For m = 2 we determine optimal weights and analyze in detail what is the impact of the ratio |S 1|/|S 2| on the minimum distance. In conclusion the weighted Reed–Muller code construction is much better than its reputation. For a class of affine variety codes that contains the weighted Reed–Muller codes we then present two list decoding algorithms. With a small modification one of these algorithms is able to correct up to 31 errors of the [49,11,28] Joyner code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen H.E., Geil O.: Evaluation codes from order domain theory. Finite Fields Th. App. 14, 92–123 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Augot D., El-Khamy M., McEliece R.J., Parvaresh F., Stepanov M., Vardy A.: List decoding of Reed– Solomon product codes. In: Proceedings of the Tenth International Workshop on Algebraic and Combinatorial Coding Theory, pp. 210–213. Zvenigorod (2006).

  3. Augot D., Stepanov M.: A note on the generalisation of the Guruswami–Sudan list decoding algorithm to Reed–Muller codes. In: Mora, L., Sala, M., Sakata, S., Perret, L., Traverso, C. (eds.) Gröbner Bases, Coding, and Cryptography, pp. 395–398. Springer, Berlin (2009)

    Chapter  Google Scholar 

  4. Beelen P., Brander K.: Efficient list decoding of a class of algebraic-geometry codes. Adv. Math. Commun. 4, 485–518 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. DeMillo R.A., Lipton R.J.: A probabilistic remark on algebraic program testing. Inf. Process. Lett. 7(4), 193–195 (1978)

    Article  MATH  Google Scholar 

  6. Dvir Z., Kopparty S., Saraf S., Sudan M.: Extensions to the method of multiplicities, with applications to Kakeya sets and Mergers, (appeared in Proc. of FOCS 2009) arXiv:0901.2529v2, p. 26 (2009).

  7. Feng G.-L., Rao T.R.N.: A simple approach for construction of algebraic-geometric codes from affine plane curves. IEEE Trans. Inf. Theory 40, 1003–1012 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feng G.-L., Rao T.R.N.: Improved geometric Goppa codes, Part I: basic theory. IEEE Trans. Inf. Theory 41, 1678–1693 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Geil O., Høholdt, T.: On hyperbolic codes. Proc. AAECC-14, Lecture Notes in Comput. Sci. 2227, 159–171 (2001).

    Google Scholar 

  10. Geil O., Matsumoto R.: Generalized Sudan’s list decoding for order domain codes. Proc. AAECC-16, Lecture Notes in Comput. Sci., 4851, pp. 50–59. Springer, Berlin (2007).

  11. Geil O., Thomsen C.: Tables for numbers of zeros with multiplicity at least r, webpage: http://zeros.spag.dk, January 18th (2011).

  12. Guruswami V., Sudan M.: Improved decoding of Reed–Solomon and algebraic-geometry codes. IEEE Trans. Inf. Theory 45, 1757–1767 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hansen J.P.: Toric varieties Hirzebruch surfaces and error-correcting codes. Appl. Algebra Eng. Comm. Comput. 13, 289–300 (2002)

    Article  MATH  Google Scholar 

  14. Høholdt T., van Lint J., Pellikaan R.: Algebraic geometry codes, Chap. 10. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory. vol. 1, pp. 871–961. Elsevier, Amsterdam (1998)

    Google Scholar 

  15. Joyner D.: Toric codes over finite fields. Appl. Algebra Eng. Comm. Comput. 15, 63–79 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kabatiansky G.: Two Generalizations of prcduct Codes. Proc. of Acad. Sci. USSR, Cybern. Theory Regul. 232, vol. 6, pp. 1277–1280 (1977).

  17. Kasami T., Lin S., Peterson W.: New generalizations of the Reed–Muller codes. I. Primitive codes. IEEE Trans. Inf. Theory 14, 189–199 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  18. Little J., Schenck H.: Toric surface codes and Minkowski sums. SIAM J. Discret. Math. 20, 999–1014 (2007)

    Article  MathSciNet  Google Scholar 

  19. Lidl R., Niederreiter H.: Introduction to finite fields and their applications. University of Cambridge Press, New York (1986)

    MATH  Google Scholar 

  20. Massey J., Costello D.J., Justesen J.: Polynomial weights and code constructions. IEEE Trans. Inf. Theory 19, 101–110 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pellikaan R., Wu X.-W.: List decoding of q-ary Reed–Muller codes. IEEE Trans. Inf. Theory 50, 679–682 (2004)

    Article  MathSciNet  Google Scholar 

  22. Pellikaan R., Wu X.-W.: List decoding of q-ary Reed–Muller codes. (Expanded version of the paper [21]), available from http://win.tue.nl/~ruudp/paper/43-exp.pdf, p. 37 (2004).

  23. Ruano D.: On the parameters of r-dimensional toric codes. Finite Fields and their Applications 13, 962–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ruano D.: On the structure of generalized toric codes. J. Symb. Comput. 44, 499–506 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Santhi N.: On algebraic decoding of q-ary Reed–Muller and product-Reed–Solomon codes. In: Proc. IEEE Int. Symp. Inf. Th., Nice, pp. 1351–1355 (2007).

  26. Schwartz J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. Assoc. Comput. Mach. 27(4), 701–717 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sørensen A.B.: Weighted Reed–Muller codes and algebraic-geometric codes. IEEE Trans. Inf. Theory 38, 1821–1826 (1992)

    Article  Google Scholar 

  28. Wu X.-W.: An algorithm for finding the roots of the polynomials over order domains. In: Proc. of 2002, IEEE Int. Symp. Inf. Th., Lausanne (2002).

  29. Zippel, R.: Probabilistic algorithms for sparse polynomials. Proc. of EUROSAM 1979, Lecture Notes in Comput. Sci., 72. Springer, Berlin, p. 216–226 (1979).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olav Geil.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geil, O., Thomsen, C. Weighted Reed–Muller codes revisited. Des. Codes Cryptogr. 66, 195–220 (2013). https://doi.org/10.1007/s10623-012-9680-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-012-9680-8

Keywords

Mathematics Subject Classification

Navigation