Skip to main content
Log in

Permanent formulae from the Veronesean

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The two formulae for the permanent of a d × d matrix given by Ryser (1963) and Glynn (2010) fit into a similar pattern that allows generalization because both are related to polarization identities for symmetric tensors, and to the classical theorem of P. Serret in algebraic geometry. The difference between any two formulae of this type corresponds to a set of dependent points on the “Veronese variety” (or “Veronesean”) v d ([d − 1]), where v d ([n]) is the image of the Veronese map v d acting on [n], the n-dimensional projective space over a suitable field. To understand this we construct dependent sets on the Veronesean and show how to construct small independent sets of size nd + 2 on v d ([n]). For d = 2 such sets of 2n + 2 points in [n] have been called “associated” and we observe that they correspond to self-dual codes of length 2n + 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baclawski K., White N.L.: Higher order independence in matroids. J. Lond. Math. Soc. (2) 19, 193–202 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baker H.F.: Principles of Geometry. Solid Geometry, vol. III. Cambridge University Press, London (1923)

    Google Scholar 

  3. Brualdi R.A., Ryser H.J.: Combinatorial Matrix Theory. Encyclopedia of Mathematics and its Applications, vol. 39. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  4. Brylawski T., Kelly D.: Matroids and Combinatorial Geometries, Department of Mathematics. Carolina Lecture Note Series. University of North Carolina, Chapel Hill (1980).

  5. Feinberg M.: On a generalization of linear independence in finite-dimensional vector spaces. J. Combin. Theory Ser. B 30, 61–69 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Glynn D.G.: On the construction of arcs using quadrics. Australas. J. Comb. 9, 3–19 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Glynn D.G.: The permanent of a square matrix. Eur. J. Comb. 31, 1887–1891 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Glynn D.G.: A condition for arcs and MDS codes. Des. Codes Cryptogr. 58, 215–218 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goodman R., Wallach N.R.: Representations and Invariants of the Classical Groups. In: Encyclopedia of Mathematics and Its Applications, vol. 68. Cambridge University Press, Cambridge (1968).

  10. Hartshorne R.: Algebraic Geometry. Springer, Berlin, New York (1983)

    MATH  Google Scholar 

  11. Hodge W.V.D., Pedoe D.: Methods of Algebraic Geometry, vol. 2. Cambridge University Press, Cambridge (1968)

    Google Scholar 

  12. Kantor W.M.: Dependent sets on the Veronesean, personal communication.

  13. Kantor W.M., Shult E.E.: Veroneseans, power subspaces and independence, Adv. Geom. (to appear).

  14. Knuth D.E.: The Art of Computer Programming. Seminumerical Algorithms, vol. 2, 2nd edn. Reading, Massachusetts (1969).

  15. Segre B.: Sulle varietà à di Veronese a due indici. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (6) 23, 303–309, 391–397 (1936).

  16. Segre B.: Un’estensione delle varietà di Veronese, ed un principio di dualità per forme algebriche. Nota I. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 1, 313–318 (1946)

    MathSciNet  MATH  Google Scholar 

  17. Segre B.: Un’estensione delle varietà di Veronese, ed un principio di dualità per forme algebriche. Nota II. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 1, 559–563 (1946)

    MathSciNet  Google Scholar 

  18. Semple J.G., Roth L.: Introduction to Algebraic Geometry. Oxford University Press, Oxford (1985)

    MATH  Google Scholar 

  19. Serret P.: Géométrie de Direction. Gauthier-Villars, Paris (1869)

    Google Scholar 

  20. Shafarevich I.R.: Basic Algebraic Geometry. Springer, Berlin (1994)

    Book  Google Scholar 

  21. Valiant L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Woodall D.R.: Some notes on Feinberg’s k-independence problem. J. Comb. Theory Ser. B 32, 350–352 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Glynn.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Finite Geometries”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glynn, D.G. Permanent formulae from the Veronesean. Des. Codes Cryptogr. 68, 39–47 (2013). https://doi.org/10.1007/s10623-012-9618-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-012-9618-1

Keywords

Mathematics Subject Classification (2010)

Navigation