Abstract
Using geometric properties of the variety \({\mathcal V_{r,t}}\) , the image under the Grassmannian map of a Desarguesian (t − 1)-spread of PG(rt − 1, q), we introduce error correcting codes related to the twisted tensor product construction, producing several families of constacyclic codes. We determine the precise parameters of these codes and characterise the words of minimum weight.
This is a preview of subscription content, log in to check access.
References
- 1.
Assmus E.F., Key J.D.: Designs and Their Codes. Cambridge University Press, Cambridge (1992)
- 2.
Betten A.: Twisted tensor product codes. Des. Codes Cryptogr. 47(1–3), 191–219 (2008)
- 3.
Berlekamp E.R.: Algebraic Coding Theory. McGraw-Hill, New York (1968)
- 4.
Bose R.C.: An affine analogue of Singer’s theorem. J. Indian Math. Soc. 6, 1–15 (1942)
- 5.
Cossidente A., Labbate D., Siciliano A.: Veronese varieties over finite fields and their projections. Des. Codes Cryptogr. 22, 19–32 (2001)
- 6.
Couvreur A., Duursma I.: Evaluation codes from smooth Quadric surfaces and twisted segre varieties, arXiv 1101.4603v1.
- 7.
Giuzzi L., Sonnino A.: LDPC codes from singer cycles. Discret. Appl. Math. 157(8), 1723–1728 (2009)
- 8.
Harris J.: Algebraic Geometry: a First course. GTM 133. Springer, New York (1992)
- 9.
Hassett B.: Introduction to Algebraic Geometry. Cambridge University Press, Cambridge (2007)
- 10.
Hirschfeld J.W.P.: Finite Projective Spaces of Three Dimension. Oxford University Press, Oxford (1986)
- 11.
Hirschfeld J.W.P., Thas J.A.: General Galois Geometries. Oxford University Press, Oxford (1991)
- 12.
Kantor W.M., Shult E.E.: Veroneseans, power subspaces and independence. Adv. Geom. (in press).
- 13.
Lunardon G.: Planar fibrations and algebraic subvarieties of the Grassmann variety. Geom. Dedicata 16(3), 291–313 (1984)
- 14.
Lunardon G.: Normal spreads. Geom. Dedicata 75(3), 245–261 (1999)
- 15.
MacWilliams F.J., Sloane N.J.A.: The Theory of Error Correcting Codes. North-Holland, Amsterdam (1977)
- 16.
Paige L.J.: A note on the Mathieu groups. Can. J. Math. 9, 15–18 (1957)
- 17.
Pepe V.: On the algebraic variety \({{\mathcal V}_{r,t}}\) . Finite Fields Appl. 17(4), 343–349 (2011)
- 18.
Radkova D., Van Zanten A.J.: Constacyclic codes as invariant subspaces. Linear Algebra Appl. 430(2–3), 855–864 (2009)
- 19.
Segre B.: Teoria di Galois, fibrazioni proiettive e geometrie non Desarguesiane. Ann. Mat. Pura Appl. 64, 1–76 (1964)
- 20.
Snapper E.: Periodic linear transformations of affine and projective geometries. Can. J. Math. 2, 149–151 (1950)
- 21.
Steinberg R.: Representations of algebraic groups. Nagoya Math. J. 22, 33–56 (1963)
Author information
Affiliations
Corresponding author
Additional information
L. Giuzzi—Part of this research has been performed while a guest of the Department of Mathematics of Ghent University.
Communicated by G. Lunardon.
Rights and permissions
About this article
Cite this article
Giuzzi, L., Pepe, V. Families of twisted tensor product codes. Des. Codes Cryptogr. 67, 375–384 (2013). https://doi.org/10.1007/s10623-012-9613-6
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- Segre product
- Veronesean
- Grassmannian
- Desarguesian spread
- Subgeometry
- Twisted product
- Constacyclic error correcting code
- Minimum weight
Mathematics Subject Classification (2010)
- 94B05
- 94B27
- 15A69
- 51E20