Skip to main content
Log in

Aspects of the Segre variety \({\mathcal{S}_{1,1,1}(2)}\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We consider various aspects of the Segre variety \({\mathcal{S}:=\mathcal{S} _{1,1,1}(2)}\) in PG(7, 2), whose stabilizer group \({\mathcal{G}_{\mathcal{S}}<{\rm GL}(8,2)}\) has the structure \({\mathcal{N}\rtimes{\rm Sym}(3),}\) where \({\mathcal{N} :={\rm GL}(2,2)\times{\rm GL}(2,2)\times{\rm GL} (2,2).}\) In particular we prove that \({\mathcal{S}}\) determines a distinguished Z 3-subgroup \({\mathcal{Z}<{\rm GL}(8,2)}\) such that \({A\mathcal{Z}A^{-1}=\mathcal{Z},}\) for all \({A\in\mathcal{G}_{\mathcal{S}},}\) and in consequence \({\mathcal{S}}\) determines a \({\mathcal{G}_{\mathcal{S}}}\)-invariant spread of 85 lines in PG(7, 2). Furthermore we see that Segre varieties \({\mathcal{S}_{1,1,1}(2)}\) in PG(7, 2) come along in triplets \({\{\mathcal{S},\mathcal{S}^{\prime},\mathcal{S}^{\prime\prime}\}}\) which share the same distinguished Z 3-subgroup \({\mathcal{Z}<{\rm GL}(8,2).}\) We conclude by determining all fifteen \({\mathcal{G}_{\mathcal{S}}}\)-invariant polynomial functions on PG(7, 2) which have degree < 8, and their relation to the five \({\mathcal{G}_{\mathcal{S}}}\)-orbits of points in PG(7, 2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bosma W., Cannon J., Playoust C.: The MAGMA algebra system I: The user language. J. Symbol. Comput. 24, 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burau W.: Mehrdimensionale projektive und höhere Geometrie. Dt. Verlag d. Wissenschaften, Berlin (1961)

    MATH  Google Scholar 

  3. Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A.: Atlas of Finite Groups. Clarendon Press, Oxford (1985)

    MATH  Google Scholar 

  4. Glynn D.G., Gulliver T.A., Maks J.G., Gupta M.K.: The Geometry of Additive Quantum Codes. Available online: www.maths.adelaide.edu.au/rey.casse/DavidGlynn/QMonoDraft.pdf (2006).

  5. Green R.M., Saniga M.: The Veldkamp space of the smallest slim dense near hexagon, preprint, arXiv:0908.0989

  6. Havlicek H., Odehnal B., Saniga M.: Factor-group-generated polar spaces and (multi-)qudits. SIGMA Symmetry Integr. Geom. Methods Appl., 5, paper 096, 15 pp (electronic) (2009).

  7. Havlicek H., Odehnal B., Saniga M.: On invariant notions of Segre varieties in binary projective spaces, submitted to Des. Codes Cryptogr.

  8. Hirschfeld J.W.P., Thas J.A.: General Galois Geometries. Oxford University Press, Oxford (1991)

    MATH  Google Scholar 

  9. Lévay P., Saniga M., Vrana P.: Three-qubit operators, the split Cayley hexagon of order two and black holes. Phys. Rev. D 78, 124022 (2008)

    Article  Google Scholar 

  10. Lévay P., Saniga M., Vrana P., Pracna P.: Black hole entropy and finite geometry. Phys. Rev. D 79, 084036 (2009)

    Article  MathSciNet  Google Scholar 

  11. Shaw R.: Linear Algebra and Group Representations, vol. 2. Academic Press, London (1983)

    MATH  Google Scholar 

  12. Shaw R., Gordon N.A.: The polynomial degree of the Grassmannian \({\mathcal{G}_{1,n,2}}\). Des. Codes Cryptogr. 39, 289–306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shaw R.: The psi-associate X # of a flat X in PG(n, 2). Des. Codes Cryptogr. 45, 229–246 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shaw R.: The polynomial degree of Grassmann and Segre varieties over GF(2). Discret. Math. 308, 872–879 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Shaw.

Additional information

Communicated by G. Lunardon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, R., Gordon, N. & Havlicek, H. Aspects of the Segre variety \({\mathcal{S}_{1,1,1}(2)}\) . Des. Codes Cryptogr. 62, 225–239 (2012). https://doi.org/10.1007/s10623-011-9508-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-011-9508-y

Keywords

Mathematics Subject Classification (2000)

Navigation