Skip to main content
Log in

On Lagrangian–Grassmannian codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Using the Lagrangian–Grassmannian, a smooth algebraic variety of dimension n(n + 1)/2 that parametrizes isotropic subspaces of dimension n in a symplectic vector space of dimension 2n, we construct a new class of linear codes generated by this variety, the Lagrangian–Grassmannian codes. We explicitly compute their word length, give a formula for their dimension and an upper bound for the minimum distance in terms of the dimension of the Lagrangian–Grassmannian variety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernt R.: An Introduction to Symplectic Geometry. American Mathematical Society, Providence (1998)

    Google Scholar 

  2. Buczynski J.: Properties of legendrian subvarieties of projective space. Geom. Dedicata. 118, 87–103 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fulton W.: Young Tableaux, with Applications to Representation Theory and Geometry. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  4. Ghorpade S.R., Lachaud G.: Higher Weights of Grassmann Codes. In: Coding Theory, Cryptography and Related Areas, pp. 122–131. Springer-Verlag, Berlin (2000).

  5. Ghorpade S.R., Lachaud G.: Hyperplane sections of Grassmannians and the number of MDS linear codes. Finite Fields Appl. 7, 468–506 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ghorpade S.R., Tsfasman M.A.: Classical varieties, codes and combinatorics. In: Eriksson, K., Linusson, S. (eds) Formal Power Series and Algebraic Combinatorics, (Vadstena, 2003) Actes/Proceedings, pp. 75–84. Linkping University, Sweden (2003)

    Google Scholar 

  7. Ghorpade S.R., Patil A.R., Pillai H.K.L.: Decomponsable subspaces, linear sections of Grassmann varieties, and higher weights of Grassmann codes. Finite Fields Appl. 15, 54–68 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ghorpade S.R., Patil A.R., Pillai H.K.: Subclose families, threshold graphs, and the weight hierarchy of Grassmann and Schubert codes. In: Arithmetic, Geometry, Cryptography and Coding Theory. (Luminy, France, Nov. 2007), Contemporary Mathematis, vol.487, pp.87–99. American Mathematical Society, Providence (2009).

  9. Hana G.-M.: Schubert unions and codes from -step flag varieties: In: Arithmetic, Geometry, and Coding Theory. (Luminy, 2005), Séminaires et Congrès, vol. 21, pp. 43–61. Mathematics Society, Paris (2009).

  10. Hansen J.P., Johnsen T., Ranestad K.: Schubert unions in Grassmann varieties. Finite Fields Appl. 13, 738–750 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hansen J.P., Johnsen T., Ranestad K.: Grassmann codes and Schubert unions. In: Arithmetic, Geometry, and Coding Theory. (Luminy, 2005), Séminaires et Congrès, vol. 21, pp. 103–121. Mathematics Society, Paris (2009).

  12. Hill R.: A First Course in Coding Theory. Clarendon Press, Oxford (1986)

    MATH  Google Scholar 

  13. Ikeda T.: Schubert Classes in the Equivariant Cohomology of the Lagrangian Grassmannianr. Adv. Math. 215, 1–23 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Iliek A., Ranestad K.: Geometry of the Lagrangian Grassmannian LG(3, 6) with applications to Brill-Noether Loci. Michigan Math. J. 53, 383–417 (2005)

    Article  MathSciNet  Google Scholar 

  15. Kresch A., Tamvakis H.: Quantum cohomology of the Lagrangian Grassmannian. J. Algebraic Geom. 12, 777–810 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Yu Nogin D.: Codes associated to Grassmannians. In: Arithmetic, Geometry and Coding Theory, (Luminy 1993) pp. 145–154. Walter de Gruyter, Berlin (1996).

  17. Rodier F.: Codes from flag varieties over a finite field. J. Pure Appl. Algebra 178, 203–214 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ryan C.T.: An application of Grassmannian varieties to coding theory. Congr. Numer 57, 257–271 (1987)

    MathSciNet  Google Scholar 

  19. Ryan C.T.: Projective codes based on Grassmann varieties. Congr. Num. 57, 273–279 (1987)

    Google Scholar 

  20. Ryan C.T., Ryan K.M.: The minimun weight of Grassmannian codes C(k, n). Disc. Appl. Math. 28, 149–156 (1990)

    Article  MATH  Google Scholar 

  21. Suzuki M.: Group Theory I. Springer Verlag, Berlin (1982)

    MATH  Google Scholar 

  22. Tsfasman M.A., Vladut S.G.: Geometric approach to higher weights. IEEE Trans. Inform. Theory 41, 1564–1588 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tsfasman M.A., Vladut S.G.: Algebraic Geometric Codes. Kluwer, Amsterdam (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Zaldivar.

Additional information

Communicated by G. Korchmaros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrillo-Pacheco, J., Zaldivar, F. On Lagrangian–Grassmannian codes. Des. Codes Cryptogr. 60, 291–298 (2011). https://doi.org/10.1007/s10623-010-9434-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-010-9434-4

Keywords

Mathematics Subject Classification (2000)

Navigation