Skip to main content
Log in

Exact point-distributions over the complex sphere

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We study point-distributions over the surface of the unit sphere in unitary space that generate quadrature rules which are exact for spherical polynomials up to a certain bi-degree. In this first stage, we explore several different characterizations for this type of point sets using standard tools such as, positive definiteness, reproducing kernel techniques, linearization formulas, etc. We find bounds on the cardinality of a point-distribution, without discussing the deeper question regarding best bounds. We include examples, construction methods and explain, via isometric embeddings from real to complex spheres, the proper connections with the so-called spherical designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bannai E., Bannai E.: A survey on spherical designs and algebraic combinatorics on spheres. Eur. J. Combin. 30(6), 1392–1425 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boyd J.N.: Orthogonal polynomials on the disc. Thesis, University of Virginia (1972).

  3. Boyd J.N., Raychowdhury P.N.: Zonal harmonic functions from two-dimensional analogs of Jacobi polynomials. Appl. Anal. 16(3), 243–259 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Delsarte P., Goethals J.M., Seidel J.J.: Bounds for systems of lines and Jacobi polynomials. Philips Res. Rep. 30, 91–105 (1975)

    MATH  Google Scholar 

  5. Delsarte P., Goethals J.M., Seidel J.J.: Spherical codes and designs. Geometriae Dedicata 9, 363–388 (1977)

    Article  MathSciNet  Google Scholar 

  6. Dreseler B., Hrach R.: Summability of Fourier expansions in terms of disc polynomials. Functions, series, operators, Vol. I, II (Budapest, 1980), pp. 375–384, Colloq. Math. Soc. János Bolyai, 35. North-Holland, Amsterdam-New York (1983).

  7. Godsil C.D.: Algebraic Combinatorics. Chapman and Hall Mathematics Series. Chapman & Hall, New York (1993)

    Google Scholar 

  8. Goethals J.-M., Seidel J.J.: Spherical designs. Relations between combinatorics and other parts of mathematics (Proc. Sympos. Pure Math., Ohio State Univ., Columbus, Ohio, 1978), pp. 255–272, Proc. Sympos. Pure Math., XXXIV, Amer. Math. Soc., Providence, R.I., (1979).

  9. Groemer H.: Geometric Applications of Fourier Series and Spherical Harmonics. Encyclopedia of Mathematics and its Applications. Cambridge University Press (1996).

  10. Hoggar S.G.: t-designs in projective spaces. Eur. J. Combin. 3(3), 233–254 (1982)

    MathSciNet  MATH  Google Scholar 

  11. Koornwinder T.H.: The addition formula for Jacobi Polynomials II. The Laplace type integral representation and the product formula. Math. Centrum Amsterdam, Report TW133 (1972).

  12. Koornwinder T.H.: The addition formula for Jacobi Polynomials III. Completion of the proof. Math. Centrum Amsterdam, Report TW135 (1972).

  13. Koornwinder T.H.: A note on the absolute bound for systems of lines. Indag. Math. 38(2), 152–153 (1976)

    MathSciNet  Google Scholar 

  14. Koornwinder T.H.: The addition formula for Laguerre polynomials. SIAM J. Math. Anal. 8(3), 535–540 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Koornwinder T.H.: Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition formula. J. London Math. Soc. (2) 18(1), 101–114 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Levenshtein V.: On designs in compact metric spaces and a universal bound on their size. Discrete metric spaces (Villeurbanne, 1996). Discrete Math. 192(1–3), 251–271 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Menegatto V.A., Oliveira C.P.: Annihilating properties of convolution operators on complex spheres. Anal. Math. 31(1), 13–30 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Menegatto V.A., Peron A.P.: A complex approach to strict positive definiteness on spheres. Integral Transform. Spec. Funct. 11(4), 377–396 (2000)

    Article  MathSciNet  Google Scholar 

  19. Quinto E.T.: Injectivity of rotation invariant Radon transforms on complex hyperplanes in C n. Integral geometry (Brunswick, Maine, 1984), pp. 245–260, Contemp. Math., 63, Amer. Math. Soc., Providence, RI, (1987).

  20. Rudin W.: Function theory in the unit ball of C n. Grundlehren der Mathematischen Wissenschaften, 241. Springer-Verlag, New York-Berlin (1980)

    Google Scholar 

  21. Sǎpiro R.L.: Irreducible representations of the group SU(n) of class I relative to SU(n − 1). Amer. Math. Soc. Transl. 2(113), 183–186 (1979)

    MathSciNet  Google Scholar 

  22. Sǎpiro R.L.: Irreducible representations of the group SU(n) of class I with respect to SU(n − 1). Amer. Math. Soc. Transl. 2(113), 187–200 (1979)

    MathSciNet  Google Scholar 

  23. Sǎpiro R.L.: Special functions connected with representations of the group SU(n) of class I relative to SU(n − 1) (n ≥ 3). Amer. Math. Soc. Transl. 2(113), 201–211 (1979)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Menegatto.

Additional information

Communicated by Dr. W. H. Haemers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menegatto, V.A., Oliveira, C.P. & Peron, A.P. Exact point-distributions over the complex sphere. Des. Codes Cryptogr. 60, 203–223 (2011). https://doi.org/10.1007/s10623-010-9425-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-010-9425-5

Keywords

Mathematics Subject Classification (2000)

Navigation