Skip to main content
Log in

\({\mathbb{Z}_2\mathbb{Z}_4}\)-linear codes: rank and kernel

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A code \({{\mathcal C}}\) is \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-additive if the set of coordinates can be partitioned into two subsets X and Y such that the punctured code of \({{\mathcal C}}\) by deleting the coordinates outside X (respectively, Y) is a binary linear code (respectively, a quaternary linear code). The corresponding binary codes of \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-additive codes under an extended Gray map are called \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-linear codes. In this paper, the invariants for \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-linear codes, the rank and dimension of the kernel, are studied. Specifically, given the algebraic parameters of \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-linear codes, the possible values of these two invariants, giving lower and upper bounds, are established. For each possible rank r between these bounds, the construction of a \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-linear code with rank r is given. Equivalently, for each possible dimension of the kernel k, the construction of a \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-linear code with dimension of the kernel k is given. Finally, the bounds on the rank, once the kernel dimension is fixed, are established and the construction of a \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-linear code for each possible pair (r, k) is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer H., Ganter B., Hergert F.: Algebraic techniques for nonlinear codes. Combinatorica 3, 21–33 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bierbrauer J.: Introduction to coding theory. Chapman & Hall/CRC, Boca Raton (2005)

    MATH  Google Scholar 

  3. Borges J., Fernández C., Phelps K.T.: Quaternary Reed–Muller codes. IEEE Trans. Inform. Theory. 51(7), 2686–2691 (2005)

    Article  MathSciNet  Google Scholar 

  4. Borges J., Fernández-Córdoba C., Phelps K.T.: ZRM codes. IEEE Trans. Inform. Theory. 54(1), 380–386 (2008)

    Article  MathSciNet  Google Scholar 

  5. Borges J., Fernández C., Pujol J., Rifà J., Villanueva M.: \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-linear codes: generator matrices and duality, to appear in designs, codes and cryptography. arXiv:0710.1149 (2009).

  6. Borges J., Fernández C., Pujol J., Rifà J., Villanueva M.: \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-additive codes. A Magma package. Universitat Autònoma de Barcelona. http://www.ccg.uab.cat (2007).

  7. Borges J., Phelps K.T., Rifà J.: The rank and kernel of extended 1-perfect \({\mathbb{Z}_4}\)-linear and additive non-\({\mathbb{Z}_4}\)–linear codes. IEEE Trans. Inform. Theory. 49(8), 2028–2034 (2003)

    Article  MathSciNet  Google Scholar 

  8. Borges J., Phelps K.T., Rifà J., Zinoviev V.A.: On \({\mathbb{Z}_4}\)-linear preparata-like and kerdock-like codes. IEEE Trans. Inform. Theory. 49(11), 2834–2843 (2003)

    Article  MathSciNet  Google Scholar 

  9. Borges J., Rifà J.: A characterization of 1-perfect additive codes. IEEE Trans. Inform. Theory. 45(5), 1688–1697 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cannon J.J., Bosma W.: (eds.) Handbook of Magma functions, edn. 2.13. 4350 pp. University of Kashan, Kashan, Iran (2006).

  11. Delsarte P.: An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl. 10(2), 1–97 (1973)

    MathSciNet  Google Scholar 

  12. Delsarte P., Levenshtein V.: Asociation schemes and coding theory. IEEE Trans. Inform. Theory. 44(6), 2477–2504 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fernández C., Villanueva M.: \({{\mathbb{Z}_2\mathbb{Z}_4}}\)-linear codes with all possible ranks and kernel dimensions, in XI international symposium on problems of redundancy in information and control systems. St. Petersburg, Russia, pp. 62–65, July (2007).

  14. Fernández-Córdoba C., Pujol J., Villanueva M.: On rank and kernel of \({\mathbb{Z}_4}\)-linear codes. Lecture Notes in Computer Science no. 5228, pp. 46–55 (2008).

  15. Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \({\mathbb{Z}_4}\)-linearity of kerdock, preparata, goethals and related codes. IEEE Trans. Inform. Theory. 40, 301–319 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Huffman W.C., Pless V.: Fundamentals of error-correcting codes. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  17. Krotov D.S.: \({\mathbb{Z}_4}\)-linear Hadamard and extended perfect codes. Electron. Note Discr. Math. 6, 107–112 (2001)

    Article  MathSciNet  Google Scholar 

  18. Lindström B.: Group partitions and mixed perfect codes. Canad. Math. Bull. 18, 57–60 (1975)

    MATH  MathSciNet  Google Scholar 

  19. MacWillams F.J., Sloane N.J.A.: The theory of error correcting codes. North Holland, Amsterdam (1977)

    Google Scholar 

  20. Pernas J., Pujol J., Villanueva M.: Kernel dimension for some families of quaternary Reed–Muller codes. Lecture Notes in Computer Science n. 5393. pp. 128–141 (2008).

  21. Phelps K.T., LeVan M.: Kernels of nonlinear Hamming codes. Design code cryptogr. 6(3), 247–257 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Phelps K.T., Rifà J.: On binary 1-perfect additive codes: some structural properties. IEEE Trans. Inform. Theory. 48(9), 2587–2592 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Phelps K.T., Rifà J., Villanueva M.: On the additive \({\mathbb{Z}_4}\)-linear and non-\({\mathbb{Z}_4}\)-linear Hadamard codes. Rank and Kernel. IEEE Trans. Inform. Theory. 52(1), 316–319 (2005)

    Article  Google Scholar 

  24. Pujol J., Rifà J.: Translation invariant propelinear codes. IEEE Trans. Inform. Theory. 43, 590–598 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pujol J., Rifà J., Solov’eva F.I.: Construction of \({\mathbb{Z}_4}\)-linear Reed–Muller codes. IEEE Trans. Inform. Theory. 55(1), 99–104 (2009)

    Article  MathSciNet  Google Scholar 

  26. Wan Z.-X.: Quaternary codes. World Scientific, Singapore (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Fernández-Córdoba.

Additional information

Communicated by Victor A. Zinoviev.

The material in this paper was presented in part at the XI International Symposium on Problems of Redundancy in Information and Control Systems, Saint Petersburg, Russia, July 2007 [13]; and at the 2nd International Castle Meeting on Coding Theory and Applications, Medina del Campo, Spain, September 2008 [14].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Córdoba, C., Pujol, J. & Villanueva, M. \({\mathbb{Z}_2\mathbb{Z}_4}\)-linear codes: rank and kernel. Des. Codes Cryptogr. 56, 43–59 (2010). https://doi.org/10.1007/s10623-009-9340-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9340-9

Keywords

Mathematics Subject Classification (2000)

Navigation