Skip to main content
Log in

Block-transitive designs in affine spaces

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

This paper deals with block-transitive t-(v, k, λ) designs in affine spaces for large t, with a focus on the important index λ = 1 case. We prove that there are no non-trivial 5-(v, k, 1) designs admitting a block-transitive group of automorphisms that is of affine type. Moreover, we show that the corresponding non-existence result holds for 4-(v, k, 1) designs, except possibly when the group is 1-D affine. Our approach involves a consideration of the finite 2-homogeneous affine permutation groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alltop W.O.: 5-designs in affine spaces. Pacific J. Math. 39, 547–551 (1971)

    MATH  MathSciNet  Google Scholar 

  2. Aschbacher M.: Chevalley groups of type G 2 as the group of a trilinear form. J. Algebra 109, 193–259 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beth Th., Jungnickel D., Lenz H.: Design Theory, vol. I and II, Encyclopedia of Mathematics and Its Applications 69/78. Cambridge University Press, Cambridge (1999).

  4. Bierbrauer J.: An infinite family of 7-designs. Discrete Math. 240, 1–11 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Block R.E.: Transitive groups of collineations on certain designs. Pacific J. Math. 15, 13–18 (1965)

    MATH  MathSciNet  Google Scholar 

  6. Cameron P.J.: Parallelisms of complete designs. London Math. Soc. Lecture Note Series, vol. 23. Cambridge University Press, Cambridge (1976).

  7. Cameron P.J., Kantor W.M.: 2-transitive and antiflag transitive collineation groups of finite projective and polar spaces. J. Algebra 60, 384–422 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cameron P.J., Praeger C.E.: Block-transitive t-designs, II: large t. In: De Clerck F. et al. (eds.) Finite Geometry and Combinatorics (Deinze 1992). London Math. Soc. Lecture Note Series, vol. 191, pp. 103–119. Cambridge University Press, Cambridge, (1993).

  9. Colbourn, C.J., Dinitz, J.H. (eds): Handbook of Combinatorial Designs, 2nd edn. CRC Press, Boca Raton (2006)

    Google Scholar 

  10. Curtis C.W., Kantor W.M., Seitz G.M.: The 2-transitive permutation representations of the finite Chevalley groups. Trans. Am. Math. Soc. 218, 1–59 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  11. Delandtsheer A., Doyen J.: Most block-transitive t-designs are point-primitive. Geom. Dedicata 29, 307–310 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gorenstein D.: Finite Simple Groups. An Introduction to Their Classification. Plenum Publishing Corp., New York, London (1982).

  13. Hall M. Jr.: Combinatorial Theory, 2nd edn. Wiley, New York (1986)

    MATH  Google Scholar 

  14. Hering C.: Transitive linear groups and linear groups which contain irreducible subgroups of prime order. Geom. Dedicata 2, 425–460 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hering C.: Transitive linear groups and linear groups which contain irreducible subgroups of prime order, II. J. Algebra 93, 151–164 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. Huber M.: Classification of flag-transitive Steiner quadruple systems. J. Combin. Theory A 94, 180–190 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Huber M.: The classification of flag-transitive Steiner 3-designs. Adv. Geom. 5, 195–221 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Huber M.: A census of highly symmetric combinatorial designs. J. Algebr. Comb. 26, 453–476 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Huber M.: The classification of flag-transitive Steiner 4-designs. J. Algebr. Comb. 26, 183–207 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Huber M.: Flag-transitive Steiner Designs. Birkhäuser, Basel, Berlin, Boston (2009)

    Book  MATH  Google Scholar 

  21. Huber M.: On the Cameron–Praeger conjecture. J. Combin. Theory A 117, 196–203 (2010)

    Article  MathSciNet  Google Scholar 

  22. Huber M.: On the existence of block-transitive combinatorial designs, Preprint (2009).

  23. Hughes D.R., Piper F.C.: Design Theory. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  24. Huppert B.: Zweifach transitive, auflösbare Permutationsgruppen. Math. Z. 68, 126–150 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  25. Huppert B.: Endliche Gruppen I. Springer, Berlin, Heidelberg, New York (1967)

    MATH  Google Scholar 

  26. Kantor W.M.: Automorphisms of designs. Math. Z. 109, 246–252 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kantor W.M.: Homogeneous designs and geometric lattices. J. Combin. Theory A 38, 66–74 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  28. Liebeck M.W.: The affine permutation groups of rank three. Proc. London Math. Soc. 54, 477–516 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  29. Maillet E.: Sur les isomorphes holoédriques et transitifs des groupes symétriques ou alternés. J. Math. Pures Appl. 1, 5–34 (1895)

    Google Scholar 

  30. Stinson D.R.: Combinatorial Designs: Constructions and Analysis. Springer, Berlin, Heidelberg, New York (2004)

    MATH  Google Scholar 

  31. Tits J.: Sur les systèmes de Steiner associés aux trois “grands” groupes de Mathieu. Rendic. Math. 23, 166–184 (1964)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Huber.

Additional information

Communicated by Ron Mullin/Rainer Steinwandt.

To Spyros Magliveras on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, M. Block-transitive designs in affine spaces. Des. Codes Cryptogr. 55, 235–242 (2010). https://doi.org/10.1007/s10623-009-9338-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9338-3

Keywords

Mathematics Subject Classification (2000)

Navigation