Skip to main content

New semifields, PN and APN functions

Abstract

We describe a method of proving that certain functions \({f:F\longrightarrow F}\) defined on a finite field F are either PN-functions (in odd characteristic) or APN-functions (in characteristic 2). This method is illustrated by giving short proofs of the APN-respectively the PN-property for various families of functions. The main new contribution is the construction of a family of PN-functions and their corresponding commutative semifields of dimension 4s in arbitrary odd characteristic. It is shown that a subfamily of order p 4s for odd s > 1 is not isotopic to previously known examples.

This is a preview of subscription content, access via your institution.

References

  • Albert A.A.: On nonassociative division algebras. Trans. Amer. Math. Soc. 72, 296–309 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  • Ball S., Brown M.R.: The six semifield planes associated with a semifield flock. Adv. Math. 189, 68–87 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Bierbrauer J.: A family of crooked functions. Des. Codes Cryptogr. 50, 235–241 (2009)

    Article  MathSciNet  Google Scholar 

  • Bierbrauer J., Kyureghyan G.M.: Crooked binomials. Des. Codes Cryptogr. 46, 269–301 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Bracken C., Byrne E., Markin N., McGuire G.: New families of quadratic almost perfect nonlinear trinomials and multinomials. Finite Fields Appl. 14, 703–714 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Budaghyan L., Carlet C., Felke P., Leander G.: An infinite class of quadratic APN functions which are not equivalent to power mappings. Proc. IEEE Internat. Symp. Inform. Theory, Seattle (2006).

  • Budaghyan L., Carlet C., Leander G.: A class of quadratic APN binomials inequivalent to power functions (submitted).

  • Budaghyan L., Carlet C., Leander G.: Another class of quadratic APN binomials over \({\mathbb{F}_{2^n}}\) : the case n divisible by 4 (manuscript).

  • Cohen S.D., Ganley M.J.: Commutative semifields, two-dimensional over their middle nuclei. J. Algebra. 75, 373–385 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  • Coulter R.S., Henderson M.: Commutative presemifields and semifields. Adv. Math. 217, 282–304 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Coulter R.S., Matthews R.W.: Planar functions and planes of Lenz-Barlotti class II. Des. Codes Cryptogr. 10, 167–184 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Coulter R.S., Henderson M., Kosick P.: Planar polynomials for commutative semifields with specified nuclei. Des. Codes Cryptogr. 44, 275–286 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Dickson L.E.: On commutative linear algebras in which division is always uniquely possible. Trans. Amer. Math. Soc. 7, 514–522 (1906)

    Article  MathSciNet  Google Scholar 

  • Edel Y., Kyureghyan G., Pott A.: A new APN function which is not equivalent to a power mapping. IEEE Trans. Inform. Theory 52, 744–747 (2006)

    Article  MathSciNet  Google Scholar 

  • Kantor W.M.: Commutative semifields and symplectic spreads. J. Algebra 270, 96–114 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Kyureghyan G.: Crooked maps in \({\mathbb{F}_{2^n}}\) . Finite Fields Appl. 13, 713–726 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Nyberg K.: Differentially uniform mappings for cryptography. In: Advances in Cryptology-EUROCRYPT 1993, LNCS, vol. 658, pp. 55–64. Springer-verlag (1994).

  • Zha Z., Kyureghyan G.M., Wang X.: Perfect nonlinear binomials and their semifields. Finite Fields Appl. 15, 125–133 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Bierbrauer.

Additional information

Communicated by Simeon Ball.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bierbrauer, J. New semifields, PN and APN functions. Des. Codes Cryptogr. 54, 189–200 (2010). https://doi.org/10.1007/s10623-009-9318-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9318-7

Keywords

  • Semifield
  • PN function
  • APN function
  • Dembowski–Ostrom polynomial
  • Middle nucleus
  • Kernel
  • Isotopy
  • Dickson semifields
  • Albert semifields

Mathematics Subject Classification (2000)

  • 11T06
  • 12K10
  • 17A35
  • 51A35
  • 51A40