Abstract
A k-plex is a selection of kn entries of a latin square of order n in which each row, column and symbol is represented precisely k times. A transversal of a latin square corresponds to the case k = 1. A k-plex is said to be indivisible if it contains no c-plex for any 0 < c < k. We prove that if n = 2km for integers k ≥ 2 and m ≥ 1 then there exists a latin square of order n composed of 2m disjoint indivisible k-plexes. Also, for positive integers k and n satisfying n = 3k, n = 4k or n ≥ 5k, we construct a latin square of order n containing an indivisible k-plex.
This is a preview of subscription content, access via your institution.
References
Cavenagh N.J., Donovan D.M., Yazici E.S.: Minimal homogeneous latin trades. Discrete Math. 306, 2047–2055 (2006)
Colbourn C.J., Rosa A.: Triple Systems. Clarendon Press, Oxford (1999)
Dénes J., Keedwell A.D.: Latin squares and their applications. Akadémiai Kiadó, Budapest (1974)
Egan J., Wanless I.M.: Latin squares with no small odd plexes. J. Comb. Des. 16, 477–492 (2008)
Egan J., Wanless I.M.: Indivisible partitions of latin squares (preprint).
Hall P.: On representatives of subsets. J. London Math. Soc. 10, 26–30 (1935)
Wanless I.M.: A generalisation of transversals for latin squares. Electron. J. Comb. 9, R12 (2002)
Wanless I.M.: Diagonally cyclic latin squares. Eur. J. Comb. 25, 393–413 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by L. Teirlinck.
Rights and permissions
About this article
Cite this article
Bryant, D., Egan, J., Maenhaut, B. et al. Indivisible plexes in latin squares. Des. Codes Cryptogr. 52, 93–105 (2009). https://doi.org/10.1007/s10623-009-9269-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-009-9269-z
Keywords
- Latin square
- Transversal
- Plex
- Orthogonal partition
Mathematics Subject Classifications (2000)
- 05B15
- 62K99