Skip to main content

A family of crooked functions

Abstract

It has been proved in Bierbrauer and Kyureghyan (Des. Codes Cryptogr. 46:269–301, 2008) that a binomial function aX i + bX j can be crooked only if both exponents i, j have 2-weight  ≤2. In the present paper we give a brief construction for all known examples of crooked binomial functions. These consist of an infinite family and one sporadic example. The construction of the sporadic example uses the properties of an algebraic curve of genus 3. Computer experiments support the conjecture that each crooked binomial is equivalent either to a member of the family or to the sporadic example.

This is a preview of subscription content, access via your institution.

References

  1. Bierbrauer D.: Codes auf hyperelliptischen und trigonalen Kurven. University of Heidelberg, Diplomarbeit (2006)

    Google Scholar 

  2. Bierbrauer J.: Introduction to Coding Theory. Chapman and Hall, CRC Press (2004).

  3. Bierbrauer J., Kyureghyan G.M.: Crooked binomials. Des. Codes Cryptogr 46, 269–301 (2008)

    Article  MathSciNet  Google Scholar 

  4. Budaghyan L., Carlet C., Felke P., Leander G.: An infinite class of quadratic APN functions which are not equivalent to power mappings. In: Proceedings of the IEEE International Symposium on Information Theory, Seattle (2006).

  5. Budaghyan L., Carlet C., Leander G.: A class of quadratic APN binomials inequivalent to power functions (submitted).

  6. Budaghyan L., Carlet C., Leander G.: Another class of quadratic APN binomials over \({\mathbb{F}_{2^n}:}\) the case n divisible by 4 (manuscript).

  7. Edel Y., Kyureghyan G., Pott A.: A new APN function which is not equivalent to a power mapping. IEEE Trans. Inform. Theory 52, 744–747 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Bierbrauer.

Additional information

Communicated by A. Pott.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bierbrauer, J. A family of crooked functions. Des. Codes Cryptogr. 50, 235–241 (2009). https://doi.org/10.1007/s10623-008-9227-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-008-9227-1

Keywords

  • Crooked functions
  • APN functions
  • Codes
  • Algebraic curve

Mathematics Subject Classifications (2000)

  • 11T06
  • 11T71