Skip to main content
Log in

Edge local complementation and equivalence of binary linear codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Orbits of graphs under the operation edge local complementation (ELC) are defined. We show that the ELC orbit of a bipartite graph corresponds to the equivalence class of a binary linear code. The information sets and the minimum distance of a code can be derived from the corresponding ELC orbit. By extending earlier results on local complementation (LC) orbits, we classify the ELC orbits of all graphs on up to 12 vertices. We also give a new method for classifying binary linear codes, with running time comparable to the best known algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aigner M., van der Holst H. (2004). Interlace polynomials. Linear Algebra Appl. 377, 11–30

    Article  MATH  MathSciNet  Google Scholar 

  2. Arratia R., Bollobás B., Coppersmith D., Sorkin G.B. (2000). Euler circuits and DNA sequencing by hybridization. Discrete Appl. Math. 104(1–3): 63–96

    Article  MATH  MathSciNet  Google Scholar 

  3. Arratia R., Bollobás B., Sorkin G.B. (2004). The interlace polynomial of a graph. J. Combin. Theory Ser. B 92(2): 199–233, arXiv:math.CO/0209045

    Article  MATH  MathSciNet  Google Scholar 

  4. Bouchet A. (1988). Graphic presentations of isotropic systems. J. Combin. Theory Ser. B 45(1): 58–76

    Article  MATH  MathSciNet  Google Scholar 

  5. Calderbank A.R., Rains E.M., Shor P.M., Sloane N.J.A. (1998). Quantum error correction via codes over GF(4). IEEE Trans. Inform. Theory 44(4): 1369–1387, arXiv:quant-ph/9608006

    Article  MATH  MathSciNet  Google Scholar 

  6. Curtis R.T. (1992). On graphs and codes. Geom. Dedicata 41(2): 127–134

    Article  MATH  MathSciNet  Google Scholar 

  7. Danielsen L.E.: On self-dual quantum codes, graphs, and Boolean functions. Master’s thesis, Department of Informatics, University of Bergen, Norway (2005). arXiv:quant-ph/0503236.

  8. Danielsen L.E., Parker M.G.: Spectral orbits and peak-to-average power ratio of Boolean functions with respect to the {I, H, N}n transform. In: Sequences and their applications – SETA 2004, Lecture Notes in Comput. Sci., vol. 3486, pp. 373–388. Springer-Verlag, Berlin (2005). arXiv:cs.IT/0504102.

  9. Danielsen L.E., Parker M.G. (2006). On the classification of all self-dual additive codes over GF(4) of length up to 12. J. Combin. Theory Ser. A 113(7): 1351–1367, arXiv:math.CO/0504522

    Article  MATH  MathSciNet  Google Scholar 

  10. de Fraysseix H. (1981). Local complementation and interlacement graphs. Discrete Math. 33(1): 29–35

    Article  MATH  MathSciNet  Google Scholar 

  11. Fon-der Flaas D.G.: On local complementations of graphs. In: Combinatorics (Eger, 1987), Colloq. Math. Soc. János Bolyai, vol. 52, pp. 257–266. North-Holland, Amsterdam (1988).

  12. Fripertinger H., Kerber A.: Isometry classes of indecomposable linear codes. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Comput. Sci., vol. 948, pp. 194–204. Springer-Verlag, Berlin (1995).

  13. Glynn D.G., Gulliver T.A., Maks J.G., Gupta M.K.: The geometry of additive quantum codes (2004). Submitted to Springer-Verlag.

  14. Hein M., Eisert J., Briegel H.J. (2004). Multi-party entanglement in graph states. Phys. Rev. A 69(6): 062,311, arXiv:quant-ph/0307130

    Article  MathSciNet  Google Scholar 

  15. Kaski P., Östergård P.R.J. (2006). Classification algorithms for codes and designs, Algorithms and Computation in Mathematics, vol. 15. Springer-Verlag, Berlin

    Google Scholar 

  16. McKay B.D.: nauty User’s Guide (2003). http://cs.anu.edu.au/~bdm/nauty/.

  17. Östergård P.R.J. (2002). Classifying subspaces of Hamming spaces. Des. Codes Cryptogr. 27(3): 297–305

    Article  MATH  MathSciNet  Google Scholar 

  18. Parker M.G., Rijmen V.: The quantum entanglement of binary and bipolar sequences. In: Sequences and their Applications – SETA ’01, Discrete Math. Theor. Comput. Sci., pp. 296–309. Springer-Verlag, London (2002). arXiv:quant-ph/0107106.

  19. Riera C., Parker M.G.: On pivot orbits of Boolean functions. In: Fourth International Workshop on Optimal Codes and Related Topics, pp. 248–253. Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia (2005).

  20. Sloane N.J.A., Plouffe S. (1995). The Encyclopedia of Integer Sequences. Academic Press, San Diego, CA

    MATH  Google Scholar 

  21. Van den Nest M., De Moor B.: Edge-local equivalence of graphs (2005). Preprint, arXiv:math.CO/ 0510246.

  22. Van den Nest M., Dehaene J., De Moor B. (2004). Graphical description of the action of local Clifford transformations on graph states. Phys. Rev. A 69(2): 022,316, arXiv:quant-ph/0308151

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Eirik Danielsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danielsen, L.E., Parker, M.G. Edge local complementation and equivalence of binary linear codes. Des. Codes Cryptogr. 49, 161–170 (2008). https://doi.org/10.1007/s10623-008-9190-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-008-9190-x

Keywords

AMS Classifications

Navigation