Designs, Codes and Cryptography

, Volume 48, Issue 2, pp 141–154 | Cite as

Binary permutation sequences as subsets of Levenshtein codes, spectral null codes, run-length limited codes and constant weight codes

  • Khmaies Ouahada
  • Theo G. Swart
  • Hendrik C. FerreiraEmail author
  • Ling Cheng


We investigate binary sequences which can be obtained by concatenating the columns of (0,1)-matrices derived from permutation sequences. We then prove that these binary sequences are subsets of a surprisingly diverse ensemble of codes, namely the Levenshtein codes, capable of correcting insertion/deletion errors; spectral null codes, with spectral nulls at certain frequencies; as well as being subsets of run-length limited codes, Nyquist null codes and constant weight codes.


Permutation codes Insertion/deletion correcting codes Constant weight codes Spectral null codes Run-length limited codes 

AMS Classifications

20B30 20B35 68P30 94A05 94A24 94B50 94B60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrell E., Vardy A., Zeger K. (2000) Upper bounds for constant-weight codes. IEEE. Trans. Inf. Theory 46(7): 2373–2395zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Blake I.F., Cohen G., Deza M. (1979) Coding with permutations. Inf. Contr. 43(1): 1–19zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chang J.C., Chen R.J., Kløve T., Tsai S.C. (2003) Distance-preserving mappings from binary vectors to permutations. IEEE. Trans. Inf. Theory 49(4): 1054–1059zbMATHCrossRefGoogle Scholar
  4. 4.
    Ding C., Fu F.-W., Kløve T., Wei V.F.-W. (2002) Construction of permutation arrays. IEEE. Trans. Inf. Theory 48(4): 977–980zbMATHCrossRefGoogle Scholar
  5. 5.
    Ferreira H.C., Vinck A.J.H.: Interference cancellation with permutation trellis codes. In: Proc 2000 IEEE Vehicular Tech Conf, Boston, MA, USA, pp. 2401–2407 (2000)Google Scholar
  6. 6.
    Ferreira H.C., Clarke W.A., Helberg A.S.J., Abdel-Ghaffar K.A.S., Vinck A.J.H. (1997) Insertion/deletion correction with spectral nulls. IEEE. Trans. Inf. Theory 43(2): 722–732zbMATHCrossRefGoogle Scholar
  7. 7.
    Gorog E. (1968) Alphabets with desirable frequency spectrum properties. IBM J. Res. Dev. 12: 234–241CrossRefGoogle Scholar
  8. 8.
    Immink K.A.S. (1999) Codes for Mass Data Storage Systems. Shannon Foundation Publishers, The NetherlandsGoogle Scholar
  9. 9.
    Levenshtein V.I. (1966) Binary codes capable of correcting deletions, insertions and reversals. Sov. Phys.-Doklady 10(8): 707–710MathSciNetGoogle Scholar
  10. 10.
    Rains E., Sloane N.J.A.: Table of constant weight binary codes. (2005).
  11. 11.
    Sloane N.J.A. (2002) On single-deletion-correcting codes. In: Arasu KT, Seress A (eds.) Codes and Designs. Ray-Chaudhuri Festschrift, Walter de Gruyter, Berlin, pp 273–291Google Scholar
  12. 12.
    Sloane N.J.A.: The on-line encyclopedia of integer sequences. (2005).
  13. 13.
    Swart T.G., de Beer I., Ferreira H.C.: On the distance optimality of permutation mappings. In: Proc. 2005 IEEE Intl. Symp. Inf. Theory, Adelaide, Australia, pp. 1068–1072 (2005).Google Scholar
  14. 14.
    Vinck A.J.H. (2000) Coded modulation for powerline communications. AEÜ Int. J. Electron. Commun. 54(1): 45–49MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Khmaies Ouahada
    • 1
  • Theo G. Swart
    • 1
  • Hendrik C. Ferreira
    • 1
    Email author
  • Ling Cheng
    • 1
  1. 1.Department of Electrical and Electronic Engineering ScienceUniversity of JohannesburgAuckland ParkSouth Africa

Personalised recommendations