Skip to main content

Crooked binomials

Abstract

A function f : GF(2r) → GF(2r) is called crooked if the sets {f(x) + f(x + a)|xGF(2r)} is an affine hyperplane for any nonzero aGF(2r). We prove that a crooked binomial function f(x) = x d + ux e defined on GF(2r) satisfies that both exponents d, e have 2-weights at most 2.

This is a preview of subscription content, access via your institution.

References

  1. Bending T.D., Fon-Der-Flaass D.: Crooked functions, bent functions, and distance regular graphs. Electron. J. Comb. 5(1), R34 (1998)

    MathSciNet  Google Scholar 

  2. Bierbrauer J.: Introduction to Coding Theory. CRC Press, Chapman and Hall (2004)

    Google Scholar 

  3. Brouwer A.E., Tolhuizen L.: A sharpening of the Johnson bound for binary linear codes and the nonexistence of linear codes with Preparata parameters. Des. Codes Cryptogr. 3, 95–98 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Budaghyan L., Carlet C., Felke P., Leander G.: An infinite class of quadratic APN functions which are not equivalent to power mappings. In: Proceedings of ISIT 2006, Seattle, USA, July 2006.

  5. Carlet C., Charpin P., Zinoviev V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15, 125–156 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. van Dam E.R., Fon-Der-Flaass D.: Codes, graphs, and schemes from nonlinear functions. Eur. J. Combin. 24, 85–98 (2003)

    Article  MATH  Google Scholar 

  7. Edel Y., Kyureghyan G., Pott A.: A new APN function which is not equivalent to a power mapping. IEEE Trans. Inform. Theory 52(2), 744–747 (2006)

    Article  MathSciNet  Google Scholar 

  8. Kyureghyan G.: Crooked maps in \({\mathbb{F}_{2^{n}}}\) . Finite Fields Their Appl. 13(3), 713–726 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Bierbrauer.

Additional information

Communicated by A. Pott.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bierbrauer, J., Kyureghyan, G.M. Crooked binomials. Des. Codes Cryptogr. 46, 269–301 (2008). https://doi.org/10.1007/s10623-007-9157-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-007-9157-3

Keywords

  • Crooked functions
  • APN functions
  • Codes
  • Cyclotomic cosets
  • Preparata codes

AMS Classifications

  • 11T06
  • 11T71