Skip to main content
Log in

A weighted version of a result of Hamada on minihypers and on linear codes meeting the Griesmer bound

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Minihypers were introduced by Hamada to investigate linear codes meeting the Griesmer bound. Hamada (Bull Osaka Women’s Univ 24:1–47, 1985; Discrete Math 116:229–268, 1993) characterized the non-weighted minihypers having parameters \(\{\sum_{i=1}^h v_{\lambda_i+1},\sum_{i=1}^h v_{\lambda_i};k-1,q\}\), with k−1 > λ1 > λ2 > ... > λ h  ≥ 0, as the union of a λ1-dimensional space, λ2-dimensional space, ..., λ h -dimensional space, which all are pairwise disjoint. We present in this article a weighted version of this result. We prove that a weighted \(\{\sum_{i=1}^h v_{\lambda_i+1},\sum_{i=1}^h v_{\lambda_i};k-1,q\}\)-minihyper \({\mathfrak{F}}\) , with k−1 > λ1 > λ2 > ... > λ h  ≥ 0, is a sum of a λ1-dimensional space, λ2-dimensional space, ..., and λ h -dimensional space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belov BI, Logachev VN and Sandimirov VP (1974). Construction of a class of linear binary codes achieving the Varshamov–Griesmer bound. Probl Info Transmission 10: 211–217

    Google Scholar 

  2. Blokhuis A (1994). Note on the size of a blocking set in PG(2,p). Combinatorica 14: 111–114

    Article  MATH  MathSciNet  Google Scholar 

  3. Bruen AA (1970). Baer subplanes and blocking sets. Bull Am Math Soc 76: 342–344

    Article  MATH  MathSciNet  Google Scholar 

  4. Bruen AA (1971). Blocking sets in finite projective planes. SIAM J Appl Math 21: 380–392

    Article  MATH  MathSciNet  Google Scholar 

  5. Beutelspacher A (1980). Blocking sets and partial spreads in finite projective spaces. Geom Dedicata 9: 130–157

    Article  MathSciNet  Google Scholar 

  6. Bose RC and Burton RC (1966). A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes. J Combin Theory 1: 96–104

    MATH  MathSciNet  Google Scholar 

  7. Ferret S and Storme L (2002). Minihypers and linear codes meeting the Griesmer bound: improvements to results of Hamada, Helleseth and Maekawa. Des Codes Cryptogr 25: 143–162

    Article  MATH  MathSciNet  Google Scholar 

  8. Govaerts P and Storme L (2002). On a particular class of minihypers and its applications. II: improvements for q square. J Combin Theory Ser A 97: 369–393

    Article  MATH  MathSciNet  Google Scholar 

  9. Govaerts P and Storme L (2003). On a particular class of minihypers and its applications. I: the result for general q. Des Codes Cryptogr 28: 51–63

    Article  MATH  MathSciNet  Google Scholar 

  10. Griesmer JH (1960). A bound for error-correcting codes. IBM J Res Develop 4: 532–542

    Article  MATH  MathSciNet  Google Scholar 

  11. Hamada N (1985). Characterization, resp. nonexistence of certain q-ary linear codes attaining the Griesmer bound. Bull Osaka Women’s Univ 24: 1–47

    MathSciNet  Google Scholar 

  12. Hamada N (1987). Characterization of minihypers in a finite projective geometry and its applications to error-correcting codes. Bull Osaka Women’s Univ 24: 1–24

    Google Scholar 

  13. Hamada N (1993). A characterization of some [n,k,d;q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry. Discrete Math 116: 229–268

    Article  MATH  MathSciNet  Google Scholar 

  14. Hamada N and Helleseth T (1993). A characterization of some q-ary codes (q > (h−1)2, h ≥  3) meeting the Griesmer bound. Math Japonica 38: 925–940

    MATH  MathSciNet  Google Scholar 

  15. Hamada N and Maekawa T (1997). A characterization of some q-ary codes (q > (h−1)2, h ≥  3) meeting the Griesmer bound: Part 2. Math Japonica 46: 241–252

    MATH  MathSciNet  Google Scholar 

  16. Hamada N and Tamari F (1978). On a geometrical method of construction of maximal t-linearly independent sets. J Combin Theory, Ser A 25: 14–28

    Article  MATH  MathSciNet  Google Scholar 

  17. Heim U (1997). Proper blocking sets in projective t-spaces. Discrete Math 174: 167–176

    Article  MATH  MathSciNet  Google Scholar 

  18. Helleseth T (1981). A characterization of codes meeting the Griesmer bound. J Combin Theory, Ser A 50: 128–159

    MATH  MathSciNet  Google Scholar 

  19. Helleseth T (1984). Further classifications of codes meeting the Griesmer bound. IEEE Trans Inform Theory 30: 395–403

    Article  MATH  MathSciNet  Google Scholar 

  20. Landjev I and Rousseva A (2006). An extension theorem for arcs and linear codes. Problems Inform Trans 42(4): 65–76

    Google Scholar 

  21. Pless VS, Huffman WC (1998) Handbook of coding theory I and II. Elsevier

  22. Solomon G and Stiffler JJ (1965). Algebraically punctured cyclic codes. Inform Control 8: 170–179

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Storme.

Additional information

Communicated by: S. Ball.

This research was supported by the Project Combined algorithmic and theoretical study of combinatorial structures between the Fund for Scientific Research Flanders-Belgium (FWO-Flanders) and the Bulgarian Academy of Sciences. This research is also part of the FWO-Flanders project nr. G.0317.06 Linear codes and cryptography.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landjev, I., Storme, L. A weighted version of a result of Hamada on minihypers and on linear codes meeting the Griesmer bound. Des. Codes Cryptogr. 45, 123–138 (2007). https://doi.org/10.1007/s10623-007-9093-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-007-9093-2

Keywords

AMS Classifications

Navigation