Skip to main content
Log in

Small weight codewords in LDPC codes defined by (dual) classical generalized quadrangles

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We find lower bounds on the minimum distance and characterize codewords of small weight in low-density parity check (LDPC) codes defined by (dual) classical generalized quadrangles. We analyze the geometry of the non-singular parabolic quadric in PG(4,q) to find information about the LDPC codes defined by Q (4,q), \({\mathcal{W}(q)}\) and \({\mathcal{H}(3,q^{2})}\) . For \({\mathcal{W}(q)}\) , and \({\mathcal{H}(3,q^{2})}\) , we are able to describe small weight codewords geometrically. For \({\mathcal{Q}(4,q)}\) , q odd, and for \({\mathcal{H}(4,q^{2})^{D}}\) , we improve the best known lower bounds on the minimum distance, again only using geometric arguments. Similar results are also presented for the LDPC codes LU(3,q) given in [Kim, (2004) IEEE Trans. Inform. Theory, Vol. 50: 2378–2388]

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagchi B, Narasimha Sastry NS (1988) Codes associated with generalized polygons. Geom Dedicata 27:1–8

    Article  MATH  MathSciNet  Google Scholar 

  2. Davey MC, MacKay DJC (1998) Low density parity check codes over GF(q). IEEE Commun Lett 2(6): 165–167

    Article  Google Scholar 

  3. Fossorier MPC (2004) Quasicyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans. Inform. Theory 50:1788–1793

    Article  MathSciNet  Google Scholar 

  4. Gallager RG, (1962) Low density parity check codes. IRE Trans. Inform. Theory 8:21–28

    Article  MathSciNet  Google Scholar 

  5. Hirschfeld JWP, Thas JA (1991) General galois geometries. Oxford University Press

  6. Hu XY, Fossorier MPC, Eleftheriou E (2004) On the computation of the minimum distance of low-density parity-check codes. 2004 IEEE Int Conf on Commun 2:767–771

    Google Scholar 

  7. Johnson SJ, Weller SR (2001) Construction of low-density parity-check codes from Kirkman triple systems. In: Proceedings of the IEEE globecom conference, San Antonio, TX, available at http://www.ee.newcastle.edu.au/users/staff/steve/

  8. Johnson SJ, Weller SR (2001) Regular low-density parity-check codes from combinatorial designs. In: Proceedings of the IEEE Information Theory workshop. Cairns, Australia,:90–92

  9. Johnson SJ, Weller SR (2002) Codes for iterative decoding from partial geometries. In: Proceedings of the IEEE international symposium information theory. Switzerland, June 30 – July 5, 6 page, extended abstract, available at http://murray.newcastle.edu.au/users/staff/steve/

  10. Kim J-L, Peled U, Perepelitsa I, Pless V, Friedland S (2004) Explicit construction of families of LDPC codes with no 4-cycles. IEEE Trans Inform Theory. 50:2378–2388

    Article  MathSciNet  Google Scholar 

  11. Kou Y, Lin S, Fossorier MPC (2001) Low-density parity-check codes based on finite geometries: a rediscovery and new results. IEEE Trans Inform Theory 47(7):2711–2736

    Article  MATH  MathSciNet  Google Scholar 

  12. Lazebnik F, Ustimenko VA (1997) Explicit construction of graphs with arbitrary large girth and of large size. Discrete Applied Math 60:275–284

    Article  MathSciNet  Google Scholar 

  13. Liu Z, Pados DA (2005) LDPC codes from generalized polygons. IEEE Trans Inform Theory 51(11):3890–3898

    Article  MathSciNet  Google Scholar 

  14. MacKay DJC (1999) Good error correcting codes based on very sparse matrices. IEEE Trans Inform Theory 45:399-431

    Article  MATH  MathSciNet  Google Scholar 

  15. MacKay DJC, Davey MC (2000) Evaluation of Gallager codes for short block length and high rate applications, codes, systems and graphical models. In: Marcus B, Rosenthal J (ed) vol 123. IMA in Mathematics and its Applications. Springer-Verlag, New York, pp.113–130

    Google Scholar 

  16. MacKay DJC, Neal RM (1996) Near Shannon limit performance of low density parity check codes. Electron Lett 32(18):1645–1646

    Article  Google Scholar 

  17. Margulis GA (1982) Explicit constructions of graphs without short cycles and low density codes. Combinatorica 2:71–78

    MATH  MathSciNet  Google Scholar 

  18. Payne SE, Thas JA (1984) Finite generalized quadrangles. Pitman Advanced Publishing Program, MA

    MATH  Google Scholar 

  19. Rosenthal J, Vontobel PO (2000) Construction of LDPC codes using Ramanujan graphs and ideas from Margulis. In: Proceedings of the 38th Allerton conference on communications, control, and computing. Voulgaris PG, Srikant R, (eds) Coordinated Science Lab, Monticello, IL, Oct. 4–6, pp.248–257

  20. Sin P, Xiang Q (2006) On the dimension of certain LDPC codes based on q-regular bipartite graphs. IEEE Trans Inform Theory 52:3735–3737

    Article  MathSciNet  Google Scholar 

  21. Sipser M, Spielman DA (1996) Expander codes. IEEE Trans Inform Theory 42:1710–1722

    Article  MATH  MathSciNet  Google Scholar 

  22. Tanner RM (1981) A recursive approach to low-complexity codes. IEEE Trans Inform Theory 27:533–547

    Article  MATH  MathSciNet  Google Scholar 

  23. Tanner RM (2001) Minimum-distance bounds by graph analysis. IEEE Trans Inform Theory 47:808–821

    Article  MATH  MathSciNet  Google Scholar 

  24. Tanner RM, Sridhara D, Sridharan A, Fuja TE, Costello DJ Jr. (2004) LDPC block and convolutional codes based on circulant matrices. IEEE Trans Inform Theory 50:2966–2984

    Article  MathSciNet  Google Scholar 

  25. Vontobel PO, Tanner RM (2001) Construction of codes based on finite generalized quadrangles for iterative decoding. In: Proceedings of 2001 IEEE international symposium information theory, Washington, DC, p 223

  26. Weller SR, Johnson SJ (2003) Regular low-density parity-check codes from oval designs. Eur Trans on Telecommun 14(5):399-409

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon-Lark Kim.

Additional information

Communicated by D. Jungnickel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JL., Mellinger, K.E. & Storme, L. Small weight codewords in LDPC codes defined by (dual) classical generalized quadrangles. Des Codes Crypt 42, 73–92 (2007). https://doi.org/10.1007/s10623-006-9017-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-006-9017-6

Keywords

Classifications

Navigation