Abstract
For a subset ψ of PG(N, 2) a known result states that ψ has polynomial degree ≤ r, r≤ N, if and only if ψ intersects every r-flat of PG(N, 2) in an odd number of points. Certain refinements of this result are considered, and are then applied in the case when ψ is the Grassmannian \(\mathcal{G}_{1,n,2}\subset PG(N, 2), N = \left( {\begin{array}{l} {n + 1} \\ 2 \\ \end{array} } \right) - 1\), to show that for n <8 the polynomial degree of \(\mathcal{G}_{1,n,2}\) is \(\left( {\begin{array}{l} n \\ 2 \\ \end{array}} \right) - 1\).
This is a preview of subscription content, access via your institution.
References
- 1.
E. F. Assmus J. D. Key (1993) Designs and their Codes Cambridge University Press Cambridge
- 2.
W. Bosma J. Cannon C. Playoust (1997)
The MAGMA algebra system I: The user language Journal of Symbol Computation 24 235–265 1484478 - 3.
B. N. Cooperstein (1998)
External flats to varieties in PG(Λ2V) over finite fields Geometriae Dedicata 69 223–235 10.1023/A:1005053409486 0893.51010 99c:51010 - 4.
David G. Glynn, Johannes G. Maks and L. R. A. (Rey) Casse, The polynomial degree of the Grassmannian \(\mathcal{G} (n,1,q)\) of lines in finite projective space PG(n,q), preprint (July 2003).
- 5.
N. A. Gordon T. M. Jarvis J. G. Maks R. Shaw (1994)
Composition algebras and PG(m,2) Journal of Geometry 51 50–59 10.1007/BF01226856 95h:17002 - 6.
J. W. P. Hirschfeld (1985) Finite Projective Spaces of Three Dimensions Clarendon Oxford
- 7.
J. W. P. Hirschfeld and R. Shaw, Projective geometry codes over prime fields, see AMS Contemporary Mathematics Series, Vol. 168, G. Mullen and P. J.-S. Shiue (eds.), Finite Fields: Theory, Applications and Algorithms, Amer. Math. Soc. (1994) pp. 151–163.
- 8.
R. Shaw (1992)
A characterization of the primals in PG(m,2) Designs, Codes and Cryptography 2 253–256 10.1007/BF00141969 0759.51007 - 9.
R. Shaw, Finite geometries and Clifford algebras III, In A. Micali et al. (eds), Proc. of the 2nd Workshop on Clifford Algebras and their Applications in Mathematical Physics, Montpellier, France, (1989); Kluwer Acad. Pubs. (1992) pp. 121–132.
- 10.
R. Shaw, Composition algebras, PG(m,2) and non-split group extensions, In M. A. del Olmo et al. (eds), Proc. of XIXth International Colloquium on Group Theoretical Methods in Physics, Salamanca (1992), Anales de Fisica, Monografias, Vol. 1, CIEMAT / RSEF, Madrid (1993) pp. 467–470.
- 11.
R. Shaw N. A. Gordon (1994)
The lines of PG(4,2) are the points of a quintic in PG(9,2) J. Combin. Theory (A) 68 226–231 95h:51023 - 12.
R. Shaw J. G. Maks N. A. Gordon (2005) \(\mathcal{G}_{1,4,2}\) Designs Codes Cryptography 34 203–227 2005m:51011
The classification of flats in PG(9,2) which are external to the Grassmannian - 13.
L. H. Soicher, The Design Package for GAP, http://designtheory.org/software/gap_design/.
Author information
Affiliations
Corresponding author
Additional information
Communicated by: D. Jungnickel
Rights and permissions
About this article
Cite this article
Shaw, R., Gordon, N.A. The Polynomial Degree of the Grassmannian \({\mathcal G_{\bf 1,}{\bf n,}{\bf 2}}\). Des Codes Crypt 39, 289–306 (2006). https://doi.org/10.1007/s10623-005-4524-4
Received:
Revised:
Accepted:
Issue Date:
Keywords
- polynomial degree
- subsets of PG(N, 2)
- Grassmannian G1, n, 2
AMS Classification
- 51E20
- 05C90
- 11G25
- 14M15