Skip to main content
Log in

Nonlinearity of Some Invariant Boolean Functions

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

One of the hardest problems in coding theory is to evaluate the covering radius of first order Reed–Muller codes RM(1,m), and more recently the balanced covering radius for crypto graphical purposes. The aim of this paper is to present some new results on this subject. We mainly study boolean functions invariant under the action of some finite groups, following the idea of Patterson and Wiedemann [The covering radius of the (1, 15) Reed-Muller Code is atleast 16276. IEEE Trans Inform Theory. Vol. 29 (1983) 354.]. Our method is Fourier transforms and our results are both theoretical and numerical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Savický (1994) ArticleTitleOn the bent Boolean functions which are symmetric Euro. J. Combinatorics. 15 407–410 Occurrence Handle10.1006/eujc.1994.1044

    Article  Google Scholar 

  2. Canteaut A., Daum M., Dobbertin H., Leander G. (2003). Workshop on coding and cryptography 2003 INRIA/ENSTA normal and non normal bent functions 91–100

  3. C. Fontaine (1999) ArticleTitleOn some cosets of the first-order Reed–Muller code with high minimum Weight IEEE Trans Inform Theory. 45 IssueID4 1237–1243 Occurrence Handle10.1109/18.761276

    Article  Google Scholar 

  4. H. Dobbertin (1995) ArticleTitleFast Software Encryption: Second International Workshop. dec. 1994 Construction of Bent Functions and Balanced Boolean Functions with High Nonlinearity Springer Lecture Notes in Computer Science 1008 61–74

    Google Scholar 

  5. J. Constantin B. Courteau J. Wolfmann (1986) Numerical experiments related to the covering radius of some Reed–Muller codes Algebraic Algorithms and Error-Correcting Codes 229 69–75

    Google Scholar 

  6. J. Seberry M.X. -Zhang Y. Zheng (1995) ArticleTitleNonlinearity and propagation characteristics of balanced Boolean functions, Inform Comput. 119 IssueID1 1–13

    Google Scholar 

  7. Zanotti J.-P. (1995). Codes à Distribution de Poids Équilibrée Université de Toulon-Var

  8. J.J. Mykkelveit (1980) ArticleTitleThe Covering Radius of the (1288) Reed–Muller Code is 56, IEEE Trans Inform. Theory. 26 IssueID3 359–361 Occurrence Handle10.1109/TIT.1980.1056187

    Article  Google Scholar 

  9. N.J. Patterson D.H. Wiedemann (1983) ArticleTitleThe covering radius of the (115) Reed–Muller Code is at least 16276 IEEE Trans Inform Theory. 29 354–356 Occurrence Handle10.1109/TIT.1983.1056679

    Article  Google Scholar 

  10. O.S. Rothaus (1976) ArticleTitleOn bent functions, J Combinatorial Theory (A). 20 300–305 Occurrence Handle10.1016/0097-3165(76)90024-8

    Article  Google Scholar 

  11. Lidl R., Niederreiter H. (1983). Finite fields Addison–Wesley Encyclopedia of Mathematics and its Applications 20

  12. S. Maitra P. Sarkar (2002) ArticleTitleMaximum Nonlinearity of Symmetric Boolean Functions on Odd Number of Variables IEEE Trans Inform Theory. 48 IssueID9 2626–2630 Occurrence Handle10.1109/TIT.2002.801482

    Article  Google Scholar 

  13. T. Siegenthaler (1984) ArticleTitleCorrelation Imunity of non-linear combining function for cryptographic applications IEEE Trans Inform Theory. 30 IssueID5 776–779 Occurrence Handle10.1109/TIT.1984.1056949

    Article  Google Scholar 

  14. T. Gilbert (1958) ArticleTitleGray codes and paths on the n-cube Bell Syst Tech. 37 815–826

    Google Scholar 

  15. W. Millan A. Clark E. Dawson (1998) ArticleTitleAdvances in Cryptology: Eurocrypt’98 Heuristic Design of Cryptographically Strong Balanced Boolean Functions Lecture Notes in Computer Science 1438 181–192

    Google Scholar 

  16. MacWilliams F. J., Sloane N. J. A. (1977). The Theory of Error-Correcting Codes, North-Holland. Mathematical Library. 16,

  17. S. Passman D. (1968) Permutation Groups W. A. Benjamin, Inc. New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Langevin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langevin, P., Zanotti, JP. Nonlinearity of Some Invariant Boolean Functions. Des Codes Crypt 36, 131–146 (2005). https://doi.org/10.1007/s10623-004-1700-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-004-1700-x

Keywords

Navigation