Skip to main content
Log in

How to Mask the Structure of Codes for a Cryptographic Use

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper we show how to strengthen public-key cryptosystems against known attacks, together with the reduction of the public-key. We use properties of subcodes to mask the structure of the codes used by the conceiver of the system. We propose new parameters for the cryptosystems and even a modified Niederreiter cryptosystem in the case of Gabidulin codes, with a public-key size of less than 4000 bits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Canteaut F. Chabaud (1998) ArticleTitleA new algorithm for finding minimum-weight words in a linear code: Application to McEliece’s cryptosystem and to narrow-sense BCH codes of length 511 IEEE Trans. Inform. Theory 44 IssueID1 367–378

    Google Scholar 

  • A. Canteaut and N. Sendrier, Cryptanalysis of the original McEliece cryptosystem, In (K. Ohta and D. Pei eds.), Advances in Cryptology–-ASIACRYPT’98, number 1514 in LNCS (1998) pp. 187–199.

  • F. Chabaud and J. Stern, The cryptographic security of the syndrome decoding problem for rank distance codes, In (K. Kim and T. Matsumoto eds.), Advances in Cryptology–-ASIACRYPT ‘96, volume 1163 of LNCS. Verlag (1996).

  • A. Dür (1987) ArticleTitleThe automorphism group of Reed–Solomon codes J. Comb. Theory, series A 44 69–82

    Google Scholar 

  • A. Ourivski, E. Gabidulin and V. Pavlouchkov, On the modified Niederreiter cryptosystem, in the Proceedings of the Information Theory and Networking Workshop, ITW(1999) p.50.

  • E. M. Gabidulin, Theory of codes with maximal rank distance, Problems Inform. Transm., vol. 21 (1985).

  • E. M. Gabidulin and A. V. Ourivski, Improved GPT public-key cryptosystems, In (P. Farrell, M. Darnell and B. Honary eds.), Coding Communications and Broadcasting (2000) pp. 73–102.

  • E. M. Gabidulin A. V. Paramonov O. V. Tretjakov (1991) ArticleTitleIdeals over a non-commutative ring and their application in cryptology LNCS 573 482–489

    Google Scholar 

  • J. K. Gibson (1995) ArticleTitleSeverely denting the Gabidulin version of the McEliece public-key cryptosystem Designs, Codes and Cryptography 6 37–45

    Google Scholar 

  • J. K. Gibson, The security of the Gabidulin public-key cryptosystem, In (U. Maurer ed.), EUROCRYPT’96 (1996) pp. 212–223.

  • P. J. Lee and E. F. Brickell, An observation on the security of McEliece’s public-key cryptosystem, In (C. G. Günter ed.), Advances in Cryptology–-EUROCRYPT’88, volume 330 of LNCS, Verlag (1988) pp. 275–280.

  • P. Loidreau N. Sendrier (2001) ArticleTitleWeak keys in McEliece public-key cryptosystem IEEE Trans. Inform. Theory 47 IssueID3 1207–211

    Google Scholar 

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error–Correcting Codes. North Holland (1977).

  • R. J. McEliece, A public-key cryptosystem based on algebraic coding theory, Technical report, Jet Propulsion Lab. DSN Progress Report (1978).

  • H. Niederreiter (1986) ArticleTitleKnapsack-type cryptosystems and algebraic coding theory Problems of Control Inform. Theory 15 IssueID2 159–166

    Google Scholar 

  • R. M. Roth G. Seroussi (1985) ArticleTitleOn generator matrices of MDS codes IEEE Trans. Inform. Theory 31 IssueID6 826–830

    Google Scholar 

  • V. M. Sidel’nikov S. O. Shestakov (1992) ArticleTitleOn cryptosystems based on generalized Reed-Solomon codes Discrete Mathematics 4 IssueID3 57–63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Loidreau.

Additional information

Communicated by: P. Wild

AMS Classification: 11T71

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, T.P., Loidreau, P. How to Mask the Structure of Codes for a Cryptographic Use. Des Codes Crypt 35, 63–79 (2005). https://doi.org/10.1007/s10623-003-6151-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-003-6151-2

Keywords

Navigation