Skip to main content
Log in

How to Mask the Structure of Codes for a Cryptographic Use

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript


In this paper we show how to strengthen public-key cryptosystems against known attacks, together with the reduction of the public-key. We use properties of subcodes to mask the structure of the codes used by the conceiver of the system. We propose new parameters for the cryptosystems and even a modified Niederreiter cryptosystem in the case of Gabidulin codes, with a public-key size of less than 4000 bits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • A. Canteaut F. Chabaud (1998) ArticleTitleA new algorithm for finding minimum-weight words in a linear code: Application to McEliece’s cryptosystem and to narrow-sense BCH codes of length 511 IEEE Trans. Inform. Theory 44 IssueID1 367–378

    Google Scholar 

  • A. Canteaut and N. Sendrier, Cryptanalysis of the original McEliece cryptosystem, In (K. Ohta and D. Pei eds.), Advances in Cryptology–-ASIACRYPT’98, number 1514 in LNCS (1998) pp. 187–199.

  • F. Chabaud and J. Stern, The cryptographic security of the syndrome decoding problem for rank distance codes, In (K. Kim and T. Matsumoto eds.), Advances in Cryptology–-ASIACRYPT ‘96, volume 1163 of LNCS. Verlag (1996).

  • A. Dür (1987) ArticleTitleThe automorphism group of Reed–Solomon codes J. Comb. Theory, series A 44 69–82

    Google Scholar 

  • A. Ourivski, E. Gabidulin and V. Pavlouchkov, On the modified Niederreiter cryptosystem, in the Proceedings of the Information Theory and Networking Workshop, ITW(1999) p.50.

  • E. M. Gabidulin, Theory of codes with maximal rank distance, Problems Inform. Transm., vol. 21 (1985).

  • E. M. Gabidulin and A. V. Ourivski, Improved GPT public-key cryptosystems, In (P. Farrell, M. Darnell and B. Honary eds.), Coding Communications and Broadcasting (2000) pp. 73–102.

  • E. M. Gabidulin A. V. Paramonov O. V. Tretjakov (1991) ArticleTitleIdeals over a non-commutative ring and their application in cryptology LNCS 573 482–489

    Google Scholar 

  • J. K. Gibson (1995) ArticleTitleSeverely denting the Gabidulin version of the McEliece public-key cryptosystem Designs, Codes and Cryptography 6 37–45

    Google Scholar 

  • J. K. Gibson, The security of the Gabidulin public-key cryptosystem, In (U. Maurer ed.), EUROCRYPT’96 (1996) pp. 212–223.

  • P. J. Lee and E. F. Brickell, An observation on the security of McEliece’s public-key cryptosystem, In (C. G. Günter ed.), Advances in Cryptology–-EUROCRYPT’88, volume 330 of LNCS, Verlag (1988) pp. 275–280.

  • P. Loidreau N. Sendrier (2001) ArticleTitleWeak keys in McEliece public-key cryptosystem IEEE Trans. Inform. Theory 47 IssueID3 1207–211

    Google Scholar 

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error–Correcting Codes. North Holland (1977).

  • R. J. McEliece, A public-key cryptosystem based on algebraic coding theory, Technical report, Jet Propulsion Lab. DSN Progress Report (1978).

  • H. Niederreiter (1986) ArticleTitleKnapsack-type cryptosystems and algebraic coding theory Problems of Control Inform. Theory 15 IssueID2 159–166

    Google Scholar 

  • R. M. Roth G. Seroussi (1985) ArticleTitleOn generator matrices of MDS codes IEEE Trans. Inform. Theory 31 IssueID6 826–830

    Google Scholar 

  • V. M. Sidel’nikov S. O. Shestakov (1992) ArticleTitleOn cryptosystems based on generalized Reed-Solomon codes Discrete Mathematics 4 IssueID3 57–63

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Pierre Loidreau.

Additional information

Communicated by: P. Wild

AMS Classification: 11T71

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, T.P., Loidreau, P. How to Mask the Structure of Codes for a Cryptographic Use. Des Codes Crypt 35, 63–79 (2005).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: