Skip to main content

Advertisement

Log in

Karyopherin Subunit Alpha 1 Enhances the Malignant Behaviors of Colon Cancer Cells via Promoting Nuclear Factor-κB p65 Nuclear Translocation

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background/Aims

Aberrant nuclear factor-κB p65 (NF-κB p65) nuclear import commonly occurs in multiple cancers, including colon cancer. According to BioGRID, we noted that Karyopherin subunit alpha 1 (KPNA1), an important molecular transporter between the nucleus and the cytoplasm, may interact with NF-κB p65. KPNA1 itself is highly expressed in colon adenocarcinoma samples (N = 286) based on The Cancer Genome Atlas (TCGA) database. We aimed to explore the role of KPNA1 in colonic carcinogenesis and to determine whether NF-κB p65 nuclear translocation was involved.

Methods

KPNA1 expressions at mRNA and protein levels were analyzed in colon cancer tissues. The regulatory effect of KPNA1 on malignant biological properties was detected in SW480 and HCT116 colon cancer cells. Coimmunoprecipitation and immunofluorescence were performed to verify the relationship between KPNA1 and NF-κB p65. KPNA1 ubiquitination was also preliminarily investigated.

Results

KPNA1 was firstly confirmed as a significantly upregulated gene in our collected clinical colon cancer samples (N = 35). KPNA1 depletion inhibited cell proliferation, induced cell cycle arrest, and diminished migratory and invasive capacity of SW480 and HCT116 cells. Colon cancer cells overexpressing KPNA1 acquired more aggressive behaviors. KPNA1 acted as a transporter to induce the nuclear accumulation of NF-κB p65, thereby activating NF-κB signaling pathway in colon cancer cells. Furthermore, HECT, C2, and WW Domain-Containing E3 Ubiquitin (HECW2) interacted with KPNA1 to induce its ubiquitination. KPNA1 labeled with polyubiquitins was degraded through ubiquitin–proteasome system.

Conclusion

The present study uncovers a role of KPNA1-NF-κB p65 axis in promoting colonic carcinogenesis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA. 2021;325:669–685.

    Article  CAS  PubMed  Google Scholar 

  2. Araghi M, Soerjomataram I, Jenkins M et al. Global trends in colorectal cancer mortality: projections to the year 2035. Int J Cancer. 2019;144:2992–3000.

    Article  CAS  PubMed  Google Scholar 

  3. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66:683–691.

    Article  PubMed  Google Scholar 

  4. Teng A, Nelson DW, Dehal A et al. Colon cancer as a subsequent malignant neoplasm in young adults. Cancer. 2019;125:3749–3754.

    Article  PubMed  Google Scholar 

  5. Figueredo A, Coombes ME, Mukherjee S. Adjuvant therapy for completely resected stage II colon cancer. Cochrane Database Syst Rev. 2008;3:CD005390.

    Google Scholar 

  6. Vleugels JL, van Lanschot MC, Dekker E. Colorectal cancer screening by colonoscopy: putting it into perspective. Dig Endosc. 2016;28:250–259.

    Article  PubMed  Google Scholar 

  7. Kanth P, Inadomi JM. Screening and prevention of colorectal cancer. BMJ. 2021;374:n1855.

    Article  PubMed  Google Scholar 

  8. Binefa G, Rodríguez-Moranta F, Teule A, Medina-Hayas M. Colorectal cancer: from prevention to personalized medicine. World J Gastroenterol. 2014;20:6786–6808.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fielhaber JA, Tan J, Joung KB et al. Regulation of karyopherin α1 and nuclear import by mammalian target of rapamycin. J Biol Chem. 2012;287:14325–14335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang R, Nan Y, Yu Y, Zhang YJ. Porcine reproductive and respiratory syndrome virus Nsp1β inhibits interferon-activated JAK/STAT signal transduction by inducing karyopherin-α1 degradation. J Virol. 2013;87:5219–5228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sakurai K, Itou T, Morita M et al. Effects of Importin α1/KPNA1 deletion and adolescent social isolation stress on psychiatric disorder-associated behaviors in mice. PLoS ONE. 2021;16:e0258364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Panayotis N, Sheinin A, Dagan SY et al. Importin α5 regulates anxiety through MeCP2 and sphingosine kinase 1. Cell Rep. 2018;25:3169–3179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsoi H, Man EP, Leung MH et al. KPNA1 regulates nuclear import of NCOR2 splice variant BQ323636.1 to confer tamoxifen resistance in breast cancer. Clin Transl Med. 2021;11:e554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sang Y, Li Y, Zhang Y et al. CDK5-dependent phosphorylation and nuclear translocation of TRIM59 promotes macroH2A1 ubiquitination and tumorigenicity. Nat Commun. 2019;10:4013.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li X, Yu W, Qian X et al. Nucleus-translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Mol Cell. 2017;66:684–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Choo HJ, Cutler A, Rother F, Bader M, Pavlath GK. Karyopherin alpha 1 regulates satellite cell proliferation and survival by modulating nuclear import. Stem Cells. 2016;34:2784–2797.

    Article  CAS  PubMed  Google Scholar 

  17. Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014;20:1242–1253.

    Article  CAS  PubMed  Google Scholar 

  18. Mansour MA. Ubiquitination: friend and foe in cancer. Int J Biochem Cell Biol. 2018;101:80–93.

    Article  CAS  PubMed  Google Scholar 

  19. Caielli S, Cardenas J, de Jesus AA et al. Erythroid mitochondrial retention triggers myeloid-dependent type I interferon in human SLE. Cell. 2021;184:4464–4479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bernassola F, Chillemi G, Melino G. HECT-type E3 ubiquitin ligases in cancer. Trends Biochem Sci. 2019;44:1057–1075.

    Article  CAS  PubMed  Google Scholar 

  21. Cockram PE, Kist M, Prakash S, Chen SH, Wertz IE, Vucic D. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ. 2021;28:591–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Clague MJ, Heride C, Urbé S. The demographics of the ubiquitin system. Trends Cell Biol. 2015;25:417–426.

    Article  CAS  PubMed  Google Scholar 

  23. Xie H, Lee L, Scicluna P et al. Novel functions and targets of miR-944 in human cervical cancer cells. Int J Cancer. 2015;136:E230–E241.

    Article  CAS  PubMed  Google Scholar 

  24. Kuipers EJ, Grady WM, Lieberman D et al. Colorectal cancer. Nat Rev Dis Primers. 2015;1:15065.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kanani A, Veen T, Søreide K. Neoadjuvant immunotherapy in primary and metastatic colorectal cancer. Br J Surg. 2021;108:1417–1425.

    Article  CAS  PubMed  Google Scholar 

  26. Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet. 2014;383:1490–1502.

    Article  PubMed  Google Scholar 

  27. Cautain B, Hill R, de Pedro N, Link W. Components and regulation of nuclear transport processes. FEBS J. 2015;282:445–462.

    Article  CAS  PubMed  Google Scholar 

  28. Cole CN, Scarcelli JJ. Transport of messenger RNA from the nucleus to the cytoplasm. Curr Opin Cell Biol. 2006;18:299–306.

    Article  CAS  PubMed  Google Scholar 

  29. Ogawa Y, Imamoto N. Nuclear transport adapts to varying heat stress in a multistep mechanism. J Cell Biol. 2018;217:2341–2352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saikia P, Bellos D, McMullen MR, Pollard KA, de la Motte C, Nagy LE. MicroRNA 181b–3p and its target importin α5 regulate toll-like receptor 4 signaling in Kupffer cells and liver injury in mice in response to ethanol. Hepatology. 2017;66:602–615.

    Article  CAS  PubMed  Google Scholar 

  31. Li S, Lv M, Qiu S et al. NF-κB p65 promotes ovarian cancer cell proliferation and migration via regulating mortalin. J Cell Mol Med. 2019;23:4338–4348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tang X, Liu D, Shishodia S et al. Nuclear factor-kappaB (NF-kappaB) is frequently expressed in lung cancer and preneoplastic lesions. Cancer. 2006;107:2637–2646.

    Article  CAS  PubMed  Google Scholar 

  33. Choi BH, Lee DH, Kim J, Kang JH, Park CS. Controls of nuclear factor-Kappa B signaling activity by 5’-AMP-activated protein kinase activation with examples in human bladder cancer cells. Int Neurourol J. 2016;20:182–187.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Patel M, Horgan PG, McMillan DC, Edwards J. NF-κB pathways in the development and progression of colorectal cancer. Transl Res. 2018;197:43–56.

    Article  CAS  PubMed  Google Scholar 

  35. Fang Y, Shen ZY, Zhan YZ et al. CD36 inhibits β-catenin/c-myc-mediated glycolysis through ubiquitination of GPC4 to repress colorectal tumorigenesis. Nat Commun. 2019;10:3981.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ni W, Yao S, Zhou Y et al. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m6A reader YTHDF3. Mol Cancer. 2019;18:143.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–479.

    Article  CAS  PubMed  Google Scholar 

  38. Krishnamoorthy V, Khanna R, Parnaik VK. E3 ubiquitin ligase HECW2 targets PCNA and lamin B1. Biochim Biophys Acta Mol Cell Res. 2018;1865:1088–1104.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our work was supported by the experimental platform of Shengjing Hospital of China Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhuan Yin.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10620_2023_7936_MOESM1_ESM.tif

Supplementary file1 Supplementary Fig. 1 HE straining was utilized to detect the presence of neoplastic cells in the clinical samples (at 40 X magnification). (TIF 2545 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Wu, D., Qu, Q. et al. Karyopherin Subunit Alpha 1 Enhances the Malignant Behaviors of Colon Cancer Cells via Promoting Nuclear Factor-κB p65 Nuclear Translocation. Dig Dis Sci 68, 3018–3031 (2023). https://doi.org/10.1007/s10620-023-07936-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-023-07936-y

Keywords

Navigation