Skip to main content
Log in

miR-29c Suppresses the Malignant Phenotype of Hepatocellular Carcinoma Cells In Vitro by Mediating TPX2 Associated with Immune Infiltration

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

miR-29-3p, an important tumor suppressor, with inhibitory effects in multiple cancers that have been studied. Its exact molecular function is in HCC, however, still not been explored clearly. The purpose of our study is to make certain how miR-29c-3p affects HCC through TPX2.

Materials and Methods

Expression profile data of miR-29c-3p and TPX2 were acquired and downloaded from the TCGA database, and the respective differential expression was verified by qPCR and immunohistochemistry. The StarBase and dual luciferase reporter confirmed TPX2 targeting miR-29c-3p. Their effects on the biological functions of Hep3B and HepG2 were investigated by cellular assays.

Results

miR-29-3p was found to be significantly down-regulated in HCC, and the miR-29-3p low expression group had a poor prognosis. Overexpression of miR-29-3p was detrimental to invasion and migration ability of HCC cells and promoted their apoptosis. We identified miR-29c-3p targeting TPX2 by predictive analysis. TPX2 was significantly upregulated in HCC, and patients with high TPX2 expression had a poor prognosis. TPX2 knockdown partially counteracted the promoting effect of miR-29-3p inhibition on hepatocellular carcinoma cells, and its effect on hepatocellular carcinoma cell biology was similar to miR-29c-3p overexpression.

Conclusion

miR-29c, a key gene regulating HCC, is lowly expressed in HCC, its overexpression can remarkably inhibit the biological function of tumor cells. miR-29c can perform this function by regulating the expression of TPX2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of hepatocellular carcinoma. Hepatology (Baltimore, Md.) 2021;73(1):4–13.

    Article  CAS  PubMed  Google Scholar 

  2. Chakraborty E, Sarkar D. Emerging therapies for hepatocellular carcinoma (HCC). Cancers. 2022;14:9.

    Article  Google Scholar 

  3. Wang W, Wei C. Advances in the early diagnosis of hepatocellular carcinoma. Genes Dis. 2020;7:308–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee YS, Dutta A. MicroRNAs in cancer. Ann Rev Pathol. 2009;4:199–227.

    Article  CAS  Google Scholar 

  5. Lujambio A, Lowe SW. The microcosmos of cancer. Nature. 2012;482:347–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lu J, Getz G, Miska EA et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–838.

    Article  CAS  PubMed  Google Scholar 

  8. Uddin A, Chakraborty S. Role of miRNAs in lung cancer. J Cell Physiol. 2018;9(8):773–776.

    Google Scholar 

  9. Zan Y, Wang B, Liang L et al. MicroRNA-139 inhibits hepatocellular carcinoma cell growth through down-regulating karyopherin alpha 2. J Exp Clin Cancer Res. 2019;38:182.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fu W, Yu G, Liang J et al. miR-144-5p and miR-451a Inhibit the growth of cholangiocarcinoma cells through decreasing the expression of ST8SIA4. Front Oncol. 2020;10:563486.

    Article  PubMed  Google Scholar 

  11. Yen YT, Yang JC, Chang JB, Tsai SC. Down-regulation of miR-194-5p for predicting metastasis in breast cancer cells. Int J Mol Sci. 2021;23:15.

    Article  Google Scholar 

  12. Chen C, Huang Z, Mo X et al. The circular RNA 001971/miR-29c-3p axis modulates colorectal cancer growth, metastasis, and angiogenesis through VEGFA. J Exp Clin Cancer Res. 2020;39:91.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang H, Fu L, Wei D et al. MiR-29c-3p suppresses the migration, invasion and cell cycle in esophageal carcinoma via CCNA2/p53 Axis. Front Bioeng Biotechnol. 2020;8:75.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zou T, Gao Y, Qie M. MiR-29c-3p inhibits epithelial-mesenchymal transition to inhibit the proliferation, invasion and metastasis of cervical cancer cells by targeting SPARC. Ann Transl Med. 2021;9:125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu Z, Cai M, Zhang Y, Tao L, Guo R. miR-29c-3p inhibits autophagy and cisplatin resistance in ovarian cancer by regulating FOXP1/ATG14 pathway. Cell Cycle (Georgetown, Tex.) 2020;19:193–206.

    Article  CAS  PubMed  Google Scholar 

  16. Hozaka Y, Seki N, Tanaka T et al. Molecular pathogenesis and regulation of the miR-29–3p-family: involvement of ITGA6 and ITGB1 in intra-hepatic cholangiocarcinoma. Cancers 2021;13:25.

    Article  Google Scholar 

  17. Che J, Su Z, Yang Wet al. Tumor-suppressor p53 specifically binds to miR-29c-3p and reduces ADAM12 expression in hepatocellular carcinoma. Dig Liver Dis. 2022.

  18. Wadsworth P. TPX. Curr Biol. 2015;25:1156–1158.

    Article  Google Scholar 

  19. Neumayer G, Belzil C, Gruss OJ, Nguyen MD. TPX2: of spindle assembly DNA damage response, and cancer. Cell Mol Life Sci. 2014;71:3027–3047.

    Article  CAS  PubMed  Google Scholar 

  20. Aguirre-Portolés C, Bird AW, Hyman A, Cañamero M, Pérez de Castro I, Malumbres M. Tpx2 controls spindle integrity, genome stability, and tumor development. Cancer Res. 2012;72:1518–1528.

    Article  PubMed  Google Scholar 

  21. Wei P, Zhang N, Xu Y et al. TPX2 is a novel prognostic marker for the growth and metastasis of colon cancer. J Transl Med. 2013;11:313.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Warner SL, Stephens BJ, Nwokenkwo S et al. Validation of TPX2 as a potential therapeutic target in pancreatic cancer cells. Clin Cancer Res. 2009;15:6519–6528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zou Z, Zheng B, Li J et al. TPX2 level correlates with cholangiocarcinoma cell proliferation, apoptosis, and EMT. Biomed Pharmacother. 2018;107:1286–1293.

    Article  CAS  PubMed  Google Scholar 

  24. Ma Y, Lin D, Sun W et al. Expression of targeting protein for xklp2 associated with both malignant transformation of respiratory epithelium and progression of squamous cell lung cancer. Clin. Cancer Res. 2006;12:1121–1127.

    Article  CAS  PubMed  Google Scholar 

  25. Huang Y, Guo W, Kan H. TPX2 is a prognostic marker and contributes to growth and metastasis of human hepatocellular carcinoma. Int. J. Mol. Sci. 2014;15:18148–18161.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Paijens ST, Vledder A, de Bruyn M, Nijman HW. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell. Mol. Immunol. 2021;18:842–859.

    Article  CAS  PubMed  Google Scholar 

  27. Lu C, Rong D, Zhang B et al. Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: challenges and opportunities. Mol Cancer. 2019;18:130.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017;14:717–734.

    Article  CAS  PubMed  Google Scholar 

  29. Chen Z, Xie H, Hu M et al. Recent progress in treatment of hepatocellular carcinoma. Am J Cancer Res. 2020;10:2993–3036.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu Q, Tu K, Zhang H, Zheng X, Yao Y, Liu Q. TPX2 as a novel prognostic biomarker for hepatocellular carcinoma. Hepatol Res. 2015;45:906–918.

    Article  CAS  PubMed  Google Scholar 

  31. Huang DH, Jian J, Li S, Zhang Y, Liu LZ. TPX2 silencing exerts anti-tumor effects on hepatocellular carcinoma by regulating the PI3K/AKT signaling pathway. Int J Mol Med. 2019;44:2113–2122.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17:807–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Konishi H, Sato H, Takahashi K, Fujiya M. Tumor-progressive mechanisms mediating miRNA-protein interaction. Int J Mol Sci. 2021;22:26.

    Article  Google Scholar 

  34. Farazi TA, Spitzer JI, Morozov P, Tuschl T. miRNAs in human cancer. J Pathol. 2011;223:102–115.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding were provided by Anhui Key Research and Development Program Project (Grant No.: 202104j07020005) and Hefei Key Common Technology R&D and Engineering of Major Scientific and Technological Achievements Project (Grant No.: 2021YL001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyong Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Chen, W., Qi, Y. et al. miR-29c Suppresses the Malignant Phenotype of Hepatocellular Carcinoma Cells In Vitro by Mediating TPX2 Associated with Immune Infiltration. Dig Dis Sci 68, 1923–1935 (2023). https://doi.org/10.1007/s10620-022-07810-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-022-07810-3

Keywords

Navigation