Skip to main content
Log in

Hydrogen Availability Is Dependent on the Actions of Both Hydrogen-Producing and Hydrogen-Consuming Microbes

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Hydrogen gas (H2) is produced by H2-producing microbes in the gut during polysaccharide fermentation. Gut microbiome also includes H2-consuming microbes utilizing H2 for metabolism: methanogens producing methane, CH4, and sulfate-reducing bacteria producing hydrogen sulfide, H2S. H2S is not measured in the evaluation of gaseous byproducts of microbial fermentation. We hypothesize that the availability of measured H2 depends on both hydrogen producers and hydrogen consumers by measuring H2 in vitro and in vivo. In the in vitro study, groups were Bacteroides thetaiotaomicron (B. theta, H2 producers), Desulfovibrio vulgaris (D. vulgaris, H2 consumers), and D. vulgaris + B. theta combined. Gas samples were collected at 2 h and 24 h after incubation and assayed for H2, CH4, and H2S. In the in vivo study Sprague–Dawley rats were gavaged with suspended bacteria in four groups: B. theta, D. vulgaris, combined, and control. Gas was analyzed for H2 at 60 min. In the in vitro experiment, H2 concentration was higher in the combined group (188 ± 93.3 ppm) compared with D. vulgaris (27.17 ± 9.6 ppm) and B. theta groups (34.2 ± 29.8 ppm; P < 0.05); H2S concentration was statistically higher in the combined group (10.32 ± 1.5 ppm) compared with B. theta (0.19 ± 0.03 ppm) and D. vulgaris group (3.46 ± 0.28 ppm; P < 0.05). In the in vivo study, H2 concentrations were significantly higher in the B. theta group (44.3 ± 6.0 ppm) compared with control (31.8 ± 4.3) and the combined group (34.2 ± 8.7, P < 0.05). This study shows that sulfate-reducing bacteria could convert available H2 to H2S, leading to measured hydrogen levels that are dependent on the actions of both H2 producers and H2 consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nakamura N, Lin HC, McSweeney CS, Mackie RI, Gaskins HR. Mechanisms of microbial hydrogen disposal in the human colon and implications for health and disease. Annu. Rev. Food Sci. Technol. 2010;1:363–395. https://doi.org/10.1146/annurev.food.102308.124101.

    Article  CAS  PubMed  Google Scholar 

  2. Levitt MD. Volume and composition of human intestinal gas determined by means of an intestinal washout technic. N. Engl. J. Med. 1971;284:1394–1398. https://doi.org/10.1056/NEJM197106242842502.

    Article  CAS  PubMed  Google Scholar 

  3. Miller MA, Parkman HP, Urbain JLC et al. Comparison of scintigraphy and lactulose breath hydrogen test for assessment of orocecal transit: lactulose accelerates small bowel transit. Dig. Dis. Sci. 1997;42:10–18. https://doi.org/10.1023/A:1018864400566.

    Article  Google Scholar 

  4. Zhao J, Zheng X, Chu H et al. A study of the methodological and clinical validity of the combined lactulose hydrogen breath test with scintigraphic oro-cecal transit test for diagnosing small intestinal bacterial overgrowth in IBS patients. Neurogastroenterol. Motil. 2014;26:794–802. https://doi.org/10.1111/nmo.12331.

    Article  CAS  PubMed  Google Scholar 

  5. Ohta S. Development of hydrogen medicine and biology: potential for various applications in diverse fields. Curr. Pharm. Des. 2021;27:583–584. https://doi.org/10.2174/138161282705210211144515.

    Article  CAS  PubMed  Google Scholar 

  6. Singh S, Lin H. Hydrogen sulfide in physiology and diseases of the digestive tract. Microorganisms 2015;3:866–889. https://doi.org/10.3390/microorganisms3040866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barton LL, Ritz NL, Fauque GD, Lin HC. Sulfur cycling and the intestinal microbiome. Dig. Dis. Sci. 2017;62:2241–2257. https://doi.org/10.1007/s10620-017-4689-5.

    Article  CAS  PubMed  Google Scholar 

  8. Tomasova L, Konopelski P, Ufnal M. Gut bacteria and hydrogen sulfide: the new old players in circulatory system homeostasis. Molecules 2016;21:1558. https://doi.org/10.3390/molecules21111558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ritz NL et al. Sulfate-reducing bacteria impairs working memory in mice. Physiol. Behav. 2016;157:281–287. https://doi.org/10.1016/j.physbeh.2016.01.023.

    Article  CAS  PubMed  Google Scholar 

  10. Ritz NL, Lin DM, Wilson MR, Barton LL, Lin HC. Sulfate-reducing bacteria slow intestinal transit in a bismuth-reversible fashion in mice. Neurogastroenterol. Motil. 2017;29:e12907. https://doi.org/10.1111/nmo.12907.

    Article  CAS  Google Scholar 

  11. Plugge CM, Zhang W, Scholten JCM, Stams AJM. Metabolic flexibility of sulfate-reducing bacteria. Front. Microbiol. 2011;2:81. https://doi.org/10.3389/FMICB.2011.00081/BIBTEX.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Birg A, Hu S, Lin HC. Reevaluating our understanding of lactulose breath tests by incorporating hydrogen sulfide measurements. JGH Open 2019;3:228–233. https://doi.org/10.1002/jgh3.12145.

    Article  PubMed  PubMed Central  Google Scholar 

  13. O’Toole GA. Classic spotlight: Bacteroides thetaiotaomicron, starch utilization, and the birth of the microbiome era. J. Bacteriol. 2016;198:2763–2763. https://doi.org/10.1128/JB.00615-16.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee SM, Donaldson GP, Mikulski Z, Boyajian S, Ley K, Mazmanian SK. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 2013;501:426–429. https://doi.org/10.1038/nature12447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN. Role of the normal gut microbiota. World J. Gastroenterol. 2015;21:8836–8847. https://doi.org/10.3748/wjg.v21.i29.8787.

    Article  CAS  Google Scholar 

  16. Rezaie A, Buresi M, Lembo A et al. Hydrogen and methane-based breath testing in gastrointestinal disorders: The North American Consensus. Am. J. Gastroenterol. 2017;112:775–784. https://doi.org/10.1038/ajg.2017.46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ghoshal UC. How to interpret hydrogen breath tests. J. Neurogastroenterol. Motil. 2011;17:312–317. https://doi.org/10.5056/jnm.2011.17.3.312.

    Article  PubMed  PubMed Central  Google Scholar 

  18. T. M. Kajs et al., Influence of a methanogenic flora on the breath H2 and symptom response to ingestion of sorbitol or oat fiber. Am. J. Gastroenterol., vol. 92, no. 1, pp. 89–94, Jan. 1997, Accessed 23 October 2017. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/8995944.

  19. Sunny JK, Garcia CJ, McCallum RW. Interpreting the lactulose breath test for the diagnosis of small intestinal bacterial overgrowth. Am. J. Med. Sci. 2016;351:229–232. https://doi.org/10.1016/j.amjms.2015.12.008.

    Article  Google Scholar 

  20. A. Newman, Breath-analysis tests in gastroenterology. Gut, vol. 15, no. 4, pp. 308–23, Apr. 1974, Accessed 23 October 2017. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/4600336.

  21. E. Scarpellini, L. Abenavoli, C. Balsano, M. Gabrielli, F. Luzza, and J. Tack, Breath tests for the assessment of the orocecal transit time. Eur. Rev. Med. Pharmacol. Sci., vol. 17 Suppl 2, no. Suppl 2, pp. 39–44, 2013, Accessed 17 December 2017. [Online]. Available: http://www.europeanreview.org/wp/wp-content/uploads/039-044.pdf.

  22. Moran C, Sheehan D, Shanahan F. The small bowel microbiota. Curr. Opin. Gastroenterol. 2015;31:130–136. https://doi.org/10.1097/MOG.0000000000000157.

    Article  CAS  PubMed  Google Scholar 

  23. Yao CK, Tuck CJ. The clinical value of breath hydrogen testing. J. Gastroenterol. Hepatol. 2017;32:20–22. https://doi.org/10.1111/jgh.13689.

    Article  PubMed  Google Scholar 

  24. Chang BW, Chua KS, Lin E, Chang C, Pimentel M. Mo1864 understanding the significant interaction between hydrogen and methane in the performance and interpretation of breath testing. Gastroenterology 2015;148:S-729. https://doi.org/10.1016/s0016-5085(15)32493-8.

    Article  Google Scholar 

  25. Levitt MD, Furne J, Springfield J, Suarez F, DeMaster E. Detoxification of hydrogen sulfide and methanethiol in the cecal mucosa. J. Clin. Invest. 1999;104:1107–1114. https://doi.org/10.1172/JCI7712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Furne J, Springfield J, Koenig T, DeMaster E, Levitt MD. Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rat tissues: a specialized function of the colonic mucosa. Biochem. Pharmacol. 2001;62:255–259. https://doi.org/10.1016/S0006-2952(01)00657-8.

    Article  CAS  PubMed  Google Scholar 

  27. Norris EJ, Culberson CR, Narasimhan S, Clemens MG. The liver as a central regulator of hydrogen sulfide. Shock 2011;36:242–250. https://doi.org/10.1097/SHK.0b013e3182252ee7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Olson KR. Is hydrogen sulfide a circulating ‘gasotransmitter’ in vertebrate blood? Biochim. Biophys. Acta Bioenerg. 2009;1787:856–863. https://doi.org/10.1016/j.bbabio.2009.03.019.

    Article  CAS  Google Scholar 

  29. Pitcher MCL, Beatty ER, Harris RM, Waring RH, Cummings JH. Sulfur metabolism in ulcerative colitis: investigation of detoxification enzymes in peripheral blood. Dig. Dis. Sci. 1998;43:2080–2085. https://doi.org/10.1023/A:1018867516575.

    Article  CAS  PubMed  Google Scholar 

  30. Ostojic SM. Does drinking water rich in hydrogen gas revive brain hypometabolism in neurodegeneration by SCFAs upregulation? Eur. J. Clin. Nutr. 2020;75:212–213. https://doi.org/10.1038/s41430-020-0680-x.

    Article  PubMed  Google Scholar 

Download references

Funding

This study is supported in part by the Winkler Bacterial Overgrowth Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry C. Lin.

Ethics declarations

Conflict of interest

Dr Lin has patent rights in related areas. All other authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birg, A., Ritz, N., Barton, L.L. et al. Hydrogen Availability Is Dependent on the Actions of Both Hydrogen-Producing and Hydrogen-Consuming Microbes. Dig Dis Sci 68, 1253–1259 (2023). https://doi.org/10.1007/s10620-022-07743-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-022-07743-x

Keywords

Navigation