Skip to main content
Log in

Wilms Tumor 1-Associated Protein Expression Is Linked to a T-Cell-Inflamed Phenotype in Pancreatic Cancer

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

The molecular driving forces of anti-tumor immunity in pancreatic ductal adenocarcinoma (PDAC) remain unclear, which causing great difficulty in identifying an appropriate treatment strategy.

Aims

This study aims to explore the associations between expression of Wilms tumor 1-associated protein (WTAP) and effector T-cell infiltration in PDAC.

Methods

In this study, we explored the association between WTAP expression and infiltration level of CD8+ T cells in PDAC. 178 PDAC samples were selected from The Cancer Genome Atlas (TCGA) database. The associations between diverse immune-cell infiltration, Tumor Mutation Burden (TMB), immune checkpoints, and WTAP expression were performed via R software. Transcriptional hallmarks of anti-tumor immunity and known T-cell-inflamed signature of PDAC were both selected to explore the relevance to WTAP expression. Potential immune checkpoint blockade (ICB) response to different WTAP expression was predicted with tumor immune dysfunction and exclusion (TIDE) algorithm.

Results

WTAP was closely linked to CD8+ T-cell infiltration (r ≥ 0.5, P value < 0.05) and did not show notable association with TMB in PDAC. WTAP positively linked to T-cell-inflamed gene expression profiles (GEP) (IL2RB, IL2RA, ZAP70, ITK, CD3E, CD38, CD27, CD276, CD8A, CMKLR1, CXCR6, HLA-DQA1, HLA-DRB1, HLA-E, NKG7, and STAT1), cytolytic activity (GZMA and PRF1), various immune checkpoints (IDO1, CD274, HAVCR2, PDCD1, CTLA4, LAG3, and PDCD1LG2) and 4-chemokine signature (CCL4, CCL5, CXCL9, and CXCL10). Besides, increased expression of WTAP was related to a higher TIDE score.

Conclusions

WTAP marks PDAC tumors with an active anti-tumor phenotype and might help the identification of PDAC patients who might benefit from immunotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets are available in the TCGA database (https://tcga-data.nci.nih.gov/tcga).

References

  1. Arnold M, Abnet CC, Neale RE et al. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology 2020;159:335–349.e15.

    Article  PubMed  Google Scholar 

  2. Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol. 2019;10:10–27.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Trujillo JA, Sweis RF, Bao R, Luke JJ. T cell-inflamed versus non-T cell-inflamed tumors: a conceptual framework for cancer immunotherapy drug development and combination therapy selection. Cancer Immunol Res. 2018;6:990–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hegde PS, Karanikas V, Evers S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin Cancer Res. 2016;22:1865–1874.

    Article  CAS  PubMed  Google Scholar 

  5. Gubin MM, Zhang X, Schuster H et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 2014;515:577–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974;71:3971–3975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Little NA, Hastie ND, Davies RC. Identification of WTAP, a novel Wilms’ tumour 1-associating protein. Hum Mol Genet. 2000;9:2231–2239.

    Article  CAS  PubMed  Google Scholar 

  8. Horiuchi K, Umetani M, Minami T et al. Wilms’ tumor 1-associating protein regulates G2/M transition through stabilization of cyclin A2 mRNA. Proc Natl Acad Sci U S A. 2006;103:17278–17283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Horiuchi K, Kawamura T, Iwanari H et al. Identification of Wilms’ tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J Biol Chem. 2013;288:33292–33302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen Y, Peng C, Chen J et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol Cancer. 2019;18:127.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tang J, Wang F, Cheng G et al. Wilms’ tumor 1-associating protein promotes renal cell carcinoma proliferation by regulating CDK2 mRNA stability. J Exp Clin Cancer Res. 2018;37:40.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jo HJ, Shim HE, Han ME et al. WTAP regulates migration and invasion of cholangiocarcinoma cells. J Gastroenterol. 2013;48:1271–1282.

    Article  CAS  PubMed  Google Scholar 

  13. Yi M, Jiao D, Xu H et al. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer. 2018;17:129.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen Y, Zhao J. Identification of an immune gene signature based on tumor microenvironment characteristics in colon adenocarcinoma. Cell Transplant. 2021;30:9636897211001314.

    Article  PubMed  Google Scholar 

  15. Wong P, Pamer EG. CD8 T cell responses to infectious pathogens. Annu Rev Immunol. 2003;21:29–70.

    Article  CAS  PubMed  Google Scholar 

  16. Sturm G, Finotello F, List M. Immunedeconv: an R package for unified access to computational methods for estimating immune cell fractions from bulk RNA-sequencing data. Methods Mol Biol. 2020;2120:223–232.

    Article  CAS  PubMed  Google Scholar 

  17. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18:220.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cristescu R, Mogg R, Ayers M et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science. 2018;362:eaar3593.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ayers M, Lunceford J, Nebozhyn M et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127:2930–2940.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Murphy KA, Griffith TS. CD8 T cell-independent antitumor response and its potential for treatment of malignant gliomas. Cancers (Basel). 2016;8:71.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Reiser J, Banerjee A. Effector, memory, and dysfunctional CD8(+) T cell fates in the antitumor immune response. J Immunol Res. 2016;2016:8941260.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li T, Fu J, Zeng Z et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48:W509–W514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–1570.

    Article  CAS  PubMed  Google Scholar 

  24. Jiang P, Gu S, Pan D et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24:1550–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Romero JM, Grünwald B, Jang GH et al. A four-chemokine signature is associated with a T-cell-inflamed phenotype in primary and metastatic pancreatic cancer. Clin Cancer Res. 2020;26:1997–2010.

    Article  CAS  PubMed  Google Scholar 

  26. Spranger S. Mechanisms of tumor escape in the context of the T-cell-inflamed and the non-T-cell-inflamed tumor microenvironment. Int Immunol. 2016;28:383–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–206.

    Article  CAS  PubMed  Google Scholar 

  28. Li BQ, Huang S, Shao QQ et al. WT1-associated protein is a novel prognostic factor in pancreatic ductal adenocarcinoma. Oncol Lett. 2017;13:2531–2538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhuo ZJ, Hua RX, Chen Z et al. WTAP gene variants confer hepatoblastoma susceptibility: a seven-center case-control study. Mol Ther Oncolytics. 2020;18:118–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang X, Xu J, Liu M et al. Adoptive CD8+ T cell therapy against cancer: challenges and opportunities. Cancer Lett. 2019;462:23–32.

    Article  CAS  PubMed  Google Scholar 

  31. Farhood B, Najafi M, Mortezaee K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol. 2019;234:8509–8521.

    Article  CAS  PubMed  Google Scholar 

  32. Huang L, Ye K, McGee MC et al. Interleukin-2-inducible t-cell kinase deficiency impairs early pulmonary protection against Mycobacterium tuberculosis infection. Front Immunol. 2020;10:3103.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liao XC, Littman DR. Altered T cell receptor signaling and disrupted T cell development in mice lacking Itk. Immunity. 1995;3:757–769.

    Article  CAS  PubMed  Google Scholar 

  34. Joo J, Omae Y, Hitomi Y et al. The association of integration patterns of human papilloma virus and single nucleotide polymorphisms on immune- or DNA repair-related genes in cervical cancer patients. Sci Rep. 2019;9:13132.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shen T, Chen Z, Zhao ZJ, Wu J. Genetic defects of the IRF1-mediated major histocompatibility complex class I antigen presentation pathway occur prevalently in the JAK2 gene in non-small cell lung cancer. Oncotarget. 2017;8:60975–60986.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–252.

    Article  CAS  PubMed  Google Scholar 

  37. Moisini I, Davidson A. BAFF: a local and systemic target in autoimmune diseases. Clin Exp Immunol. 2009;158:155–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Edwards DR, Handsley MM, Pennington CJ. The ADAM metalloproteinases. Mol Aspects Med. 2008;29:258–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Humphris JL, Patch AM, Nones K et al. Hypermutation in pancreatic cancer. Gastroenterology. 2017;152:68-74.e2.

    Article  CAS  PubMed  Google Scholar 

  40. Joosten SA, van Meijgaarden KE, Savage ND et al. Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proc Natl Acad Sci U S A. 2007;104:8029–8034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pham K, Luo D, Liu C, Harrison JK. CCL5, CCR1 and CCR5 in murine glioblastoma: immune cell infiltration and survival rates are not dependent on individual expression of either CCR1 or CCR5. J Neuroimmunol. 2012;246:10–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gao JL, Wynn TA, Chang Y et al. Impaired host defense, hematopoiesis, granulomatous inflammation and type 1-type 2 cytokine balance in mice lacking CC chemokine receptor 1. J Exp Med. 1997;185:1959–1968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Auerbuch V, Brockstedt DG, Meyer-Morse N, O’Riordan M, Portnoy DA. Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. J Exp Med. 2004;200:527–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Whiting D, Hsieh G, Yun JJ et al. Chemokine monokine induced by IFN-gamma/CXC chemokine ligand 9 stimulates T lymphocyte proliferation and effector cytokine production. J Immunol. 2004;172:7417–7424.

    Article  CAS  PubMed  Google Scholar 

  45. Peng D, Kryczek I, Nagarsheth N et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature. 2015;527:249–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

JX: Conceptualization, methodology, software, data curation, formal analysis, investigation, validation, writing-original draft.

Corresponding author

Correspondence to Ji-li Xu.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Jl. Wilms Tumor 1-Associated Protein Expression Is Linked to a T-Cell-Inflamed Phenotype in Pancreatic Cancer. Dig Dis Sci 68, 831–840 (2023). https://doi.org/10.1007/s10620-022-07620-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-022-07620-7

Keywords

Navigation