Skip to main content

Advertisement

Log in

Is the Medium Still the Message? Culture-Independent Diagnosis of Gastrointestinal Infections

  • Mentored Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Infectious diarrhea is caused by a variety of pathogens, including viruses, bacteria, and parasitic organisms. Though the causative agent of diarrhea has historically been evaluated via stool cultures, recently, culture-independent diagnostic tests (CIDT) have been developed and utilized with increasing frequency. Current practice guidelines recommend their use as adjuncts to stool cultures for diagnosing acute and chronic diarrhea. The three principal CIDT are microscopy, enzyme-based immunoassays (EIAs), and molecular based polymerase chain reaction (PCR). This review explores the common causes of infectious diarrhea, the basics of stool culture, the diagnostic utility of these three culture-independent modalities, and the strengths and weaknesses of all currently available clinical techniques. It also outlines considerations for specific populations including returning travelers and those with inflammatory bowel disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PCR:

Polymerase chain reaction

IDSA:

Infectious Disease Society of America

ACG:

American College of Gastroenterology

FDA:

Food and Drug Administration

CIDT:

Culture-independent diagnostic tests

ELISA:

Enzyme-linked immunosorbent assays

EIA:

Enzyme immunoassay

CDC:

Centers for Disease Control and Prevention

References

  1. Troeger C, Blacker BF, Khalil IA, Rao PC, Cao S, Zimsen SR. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis 2018;18:1211–1228.

    Google Scholar 

  2. Dawod E, Crawford CV. Common diarrheal illnesses in the Elderly. Clin Geriatr Med 2021;37:103–117.

    PubMed  Google Scholar 

  3. Baral R, Nonvignon J, Debellut F, Agyemang SA, Clark A, Pecenka C. Cost of illness for childhood diarrhea in low- and middle-income countries: a systematic review of evidence and modelled estimates. BMC Public Health 2020;20:619.

    PubMed  PubMed Central  Google Scholar 

  4. Bartsch SM, O’Shea KJ, Lee BY. The clinical and economic burden of norovirus gastroenteritis in the United States. J Infect Dis 2020;222:1910–1919.

    PubMed  PubMed Central  Google Scholar 

  5. Shane AL, Mody RK, Crump JA, Tarr PI, Steiner TS, Kotloff K. Infectious diseases society of America clinical practice guidelines for the diagnosis and management of infectious diarrhea. Clin Infect Dis 2017;65:e45–e80.

    PubMed  PubMed Central  Google Scholar 

  6. Troeger C, Khalil IA, Rao PC, Cao S, Blacker BF, Ahmed T. Rotavirus vaccination and the global burden of rotavirus diarrhea among children younger than 5 years. JAMA Pediatr 2018;172:958–965.

    PubMed  PubMed Central  Google Scholar 

  7. Tohma K, Lepore CJ, Gao Y, Ford-Siltz LA, Parra GI. Population Genomics of GII@4 noroviruses reveal complex diversification and new antigenic sites involved in the emergence of pandemic strains. mBio 2019;10:e02202.

  8. Leung AK, Leung AA, Wong AH, Hon KL. Travelers’ diarrhea: a clinical review. Recent Pat Inflamm Allergy Drug Discov 2019;13:38–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Maniha S, Noor R. Genetic makeup and associated virulence posed by the enteropathogenic Escherichia coli and the Enterotoxigenic Escherichia coli pathotypes. Biomed Biotechnol Res J 2020;4:280–284.

    Google Scholar 

  10. Schuetz AN. Emerging agents of gastroenteritis: Aeromonas, Plesiomonas, and the diarrheagenic pathotypes of Escherichia coli. Semin Diagn Pathol 2019;36:187–192.

    PubMed  Google Scholar 

  11. Fatima R, Aziz M. The hypervirulent strain of clostridium difficile: NAP1/B1/027: a brief overview. Cureus 2019;11:e3977.

    PubMed  PubMed Central  Google Scholar 

  12. Van Beurden YH, Bomers MK, van der Werff SD, Pompe EAPM, Spiering S, Vandenbroucke-Grauls CMJE, Mulder CJJ. Cost analysis of an outbreak of Clostridium difficile infection ribotype 027 in a Dutch tertiary care centre. J Hosp Infect 2017;95:421–425.

    PubMed  Google Scholar 

  13. Parvaneh L, Sharifi N, Azizi G, Abolhassani H, Sharifi L, Mohebbi A. Infectious etiology of chronic diarrhea in patients with primary immunodeficiency diseases. Eur Ann Allergy Clin Immunol 2019;51:32–37.

    CAS  PubMed  Google Scholar 

  14. Santoiemma PP, Ison MG, Angarone MP. Newer approaches in diagnosis of diarrhea in immunocompromised patients. Curr Opin Infect Dis 2019;32:461–467.

    CAS  PubMed  Google Scholar 

  15. Lee JY, Cho SY, Hwang HSH, Ryu JY, Lee J, Do Song I. Diagnostic yield of stool culture and predictive factors for positive culture in patients with diarrheal illness. Medicine (Baltimore) 2017;96:e7641.

    Google Scholar 

  16. Humphries RM, Linscott AJ. Practical guidance for clinical microbiology laboratories: diagnosis of bacterial gastroenteritis. Clin Microbiol Rev 2015;28:3–31.

    PubMed  PubMed Central  Google Scholar 

  17. Nagata N, Tohya M, Takeuchi F, Suda W, Nishijima S, Ohsugi M. Effects of storage temperature, storage time, and Cary-Blair transport medium on the stability of the gut microbiota. Drug Discov Ther 2019;13:256–260.

    CAS  PubMed  Google Scholar 

  18. Raich TJ, Powell S. The changing landscape of diagnostic testing for diarrheal disease. MLO Med Lab Obs 2014;46:36–38.

    PubMed  Google Scholar 

  19. Morris AJ, Byrne TC, Madden JF, Reller LB. Duration of incubation of fungal cultures. J Clin Microbiol 1996;34:1583–1585.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Anderson NW, Buchan BW, Ledeboer NA. Comparison of the BD MAX enteric bacterial panel to routine culture methods for detection of Campylobacter, enterohemorrhagic Escherichia coli (O157), Salmonella, and Shigella isolates in preserved stool specimens. J Clin Microbiol 2014;52:1222–1224.

    PubMed  PubMed Central  Google Scholar 

  21. Kasirga E. The importance of stool tests in diagnosis and follow-up of gastrointestinal disorders in children. Turk Pediatri Ars 2019;54:141–148.

    PubMed  PubMed Central  Google Scholar 

  22. Vandenberg O, Van Laethem Y, Souayah H, Kutane WT, Van Gool T, Dediste A. Improvement of routine diagnosis of intestinal parasites with multiple sampling and SAF-fixative in the triple-faeces-test. Acta Gastroenterol Belg 2006;69:361–366.

    PubMed  Google Scholar 

  23. Colmer-Hamood JA. Fecal microscopy: artifacts mimicking ova and parasites. Lab Med 2001;32:80–84.

    Google Scholar 

  24. Adeyemo FE, Singh G, Reddy P, Stenström TA. Methods for the detection of Cryptosporidium and Giardia: From microscopy to nucleic acid based tools in clinical and environmental regimes. Acta Trop 2018;184:15–28.

    CAS  PubMed  Google Scholar 

  25. Intra J, Taverna E, Sala MR, Falbo R, Cappellini F, Brambilla P. Detection of intestinal parasites by use of the cuvette-based automated microscopy analyser sediMAX((R)). Clin Microbiol Infect 2016;22:279–284.

    CAS  PubMed  Google Scholar 

  26. Intra J, Sala MR, Falbo R, Cappellini F, Brambilla P. Improvement in the detection of enteric protozoa from clinical stool samples using the automated urine sediment analyzer sediMAX((R)) 2 compared to sediMAX((R)) 1. Eur J Clin Microbiol Infect Dis 2017;36:147–151.

    CAS  PubMed  Google Scholar 

  27. Alhajj M, Farhana A. Enzyme Linked Immunosorbent Assay, in StatPearls. 2021: Treasure Island (FL).

  28. Stool Specimens - Detection of Parasite Antigens. 2020 November 2, 2020 [cited 2021; Available from: https://www.cdc.gov/dpdx/diagnosticprocedures/stool/antigendetection.html.

  29. Loutfy MR, Wilson M, Keystone JS, Kain KC. Serology and eosinophil count in the diagnosis and management of strongyloidiasis in a non-endemic area. Am J Trop Med Hyg 2002;66:749–752.

    PubMed  Google Scholar 

  30. Garcia LS, Shimizu RY. Evaluation of nine immunoassay kits (enzyme immunoassay and direct fluorescence) for detection of Giardia lamblia and Cryptosporidium parvum in human fecal specimens. J Clin Microbiol 1997;35:1526–1529.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Abd-Alla MD, Jackson TF, Gathiram VINDOH, El-Hawey AM, Ravdin JI, et al. Differentiation of pathogenic Entamoeba histolytica infections from nonpathogenic infections by detection of galactose-inhibitable adherence protein antigen in sera and feces. J Clin Microbiol 1993;31:2845–2850.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Siddons CA, Chapman PA, Rush BA. Evaluation of an enzyme immunoassay kit for detecting cryptosporidium in faeces and environmental samples. J Clin Pathol 1992;45:479–482.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Green EL, Miles MA, Warhurst DC. Immunodiagnostic detection of Giardia antigen in faeces by a rapid visual enzyme-linked immunosorbent assay. Lancet 1985;2:691–693.

    CAS  PubMed  Google Scholar 

  34. Alexander CL, Niebel M, Jones B. The rapid detection of Cryptosporidium and Giardia species in clinical stools using the Quik Chek immunoassay. Parasitol Int 2013;62:552–553.

    PubMed  Google Scholar 

  35. Sharp SE, Suarez CA, Duran Y, Poppiti RJ. Evaluation of the Triage Micro Parasite Panel for detection of Giardia lamblia, Entamoeba histolytica/Entamoeba dispar, and Cryptosporidium parvum in patient stool specimens. J Clin Microbiol 2001;39:332–334.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Garcia LS, Shimizu RY, Bernard CN. Detection of Giardia lamblia, Entamoeba histolytica/Entamoeba dispar, and Cryptosporidium parvum antigens in human fecal specimens using the triage parasite panel enzyme immunoassay. J Clin Microbiol 2000;38:3337–3340.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Goka AKJ, Rolston DDK, Mathan VI, Farthing MJG. Diagnosis of Strongyloides and hookworm infections: comparison of faecal and duodenal fluid microscopy. Trans R Soc Trop Med Hyg 1990;84:829–831.

    CAS  PubMed  Google Scholar 

  38. Senok AC, Aldosari KM, Alowaisheq RA, et al. Detection of clostridium difficile antigen and toxin in stool specimens: Comparison of the C. difficile quik chek complete enzyme immunoassay and GeneXpert C. difficile polymerase chain reaction assay. Saudi J Gastroenterol 2017;23:259–262.

    PubMed  PubMed Central  Google Scholar 

  39. Amjad M. An overview of the molecular methods in the diagnosis of gastrointestinal infectious diseases. Int J Microbiol 2020;2020:8135724.

    PubMed  PubMed Central  Google Scholar 

  40. Crobach MJT, Dekkers OM, Wilcox MH, Kuijper EJ. European Society of Clinical Microbiology and Infectious Diseases (ESCMID): data review and recommendations for diagnosing Clostridium difficile-infection (CDI). Clin Microbiol Infect 2009;15:1053–1066.

    CAS  PubMed  Google Scholar 

  41. Musher DM, Manhas A, Jain P, Nuila F, Waqar A, Logan N. Detection of Clostridium difficile toxin: comparison of enzyme immunoassay results with results obtained by cytotoxicity assay. J Clin Microbiol 2007;45:2737–2439.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nechvatal JM, Ram JL, Basson MD, Namprachan P, Niec SR, Badsha KZ. Fecal collection, ambient preservation, and DNA extraction for PCR amplification of bacterial and human markers from human feces. J Microbiol Methods 2008;72:124–132.

    CAS  PubMed  Google Scholar 

  43. Da Silva AJ, Bornay-Llinares FJ, Moura IN, Slemenda SB, Tuttle JL, Pieniazek NJ. Fast and reliable extraction of protozoan parasite DNA from fecal specimens. Mol Diagn 1999;4:57–64.

    CAS  PubMed  Google Scholar 

  44. Diagnostic Procedures. 2019 June 17, 2019; Available from: https://www.cdc.gov/dpdx/diagnosticprocedures/index.html.

  45. Crobach MJT, Planche T, Eckert C, Barbut F, Terveer EM, Dekkers OM. European Society of Clinical Microbiology and Infectious Diseases: update of the diagnostic guidance document for Clostridium difficile infection. Clin Microbiol Infect 2016;22:S63–S81.

    PubMed  Google Scholar 

  46. Kelly CR, Fischer M, Allegretti JR, et al. ACG clinical guidelines: prevention, diagnosis, and treatment of clostridioides difficile infections. Am J Gastroenterol 2021;116:1124–1147.

    PubMed  Google Scholar 

  47. McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE. Clinical practice guidelines for clostridium difficult infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis 2018;66:987–994.

    CAS  PubMed  Google Scholar 

  48. Shiga Toxin Direct Test. [cited 2021; Available from: https://gbscience.com/products/panels-and-tests/shiga-toxin-direct-test/.

  49. The BioFire FilmArray Gastrointestinal (GI) Panel. [cited 2021; Available from: https://www.biofiredx.com/products/the-filmarray-panels/filmarraygi/.

  50. Mölling P, Nilsson P, Ennefors T, Ögren J, Florén K, Thulin Hedberg S, Sundqvist M. Evaluation of the BD max enteric parasite panel for clinical diagnostics. J Clin Microbiol 2016;54:443–444.

    PubMed  PubMed Central  Google Scholar 

  51. Yalamanchili H, Dandachi D, Okhuysen PC. Use and interpretation of enteropathogen multiplex nucleic acid amplification tests in patients with suspected infectious diarrhea. Gastroenterol Hepatol (N Y) 2018;14:646–652.

    Google Scholar 

  52. xTAG Gastrointestinal Pathogen Panel. [cited 2021; Available from: https://www.luminexcorp.com/gastrointestinal-pathogen-panel/#overview.

  53. Yoo J, Park J, Lee HK, Yu JK, Lee GD, Park KG. Comparative evaluation of seegene allplex gastrointestinal, Luminex xTAG gastrointestinal pathogen panel, and BD MAX enteric assays for detection of gastrointestinal pathogens in clinical stool specimens. Arch Pathol Lab Med 2019;143:999–1005.

    CAS  PubMed  Google Scholar 

  54. O’Neal M, Murray H, Dash S, Al-Hasan MN, Justo JA, Bookstaver PB. Evaluating appropriateness and diagnostic stewardship opportunities of multiplex polymerase chain reaction gastrointestinal testing within a hospital system. Ther Adv Infect Dis 2020;7:2049936120959561.

    PubMed  PubMed Central  Google Scholar 

  55. Li A, Tran S, Wang H, LeSaux M, Ma Y, Meltzer AC. Multiplex polymerase chain reaction test to diagnose infectious diarrhea in the emergency department. Am J Emerg Med 2019;37:1368–1370.

    PubMed  Google Scholar 

  56. Kwack WG, Lim YJ, Kwon KH, Chung JW, Oh JY. Outcomes and clinical relevance of stool multiplex bacterial polymerase chain reaction in patients with acute diarrhea: single center experience. Korean J Int Med 2020;35:300–309.

    Google Scholar 

  57. Amar CFL, East CL, Gray J, Iturriza-Gomara M, Maclure EA, McLauchlin J. Detection by PCR of eight groups of enteric pathogens in 4627 faecal samples: re-examination of the English case-control Infectious Intestinal Disease Study (1993–1996). Eur J Clin Microbiol Infect Dis 2007;26:311–323.

    CAS  PubMed  Google Scholar 

  58. Ahmad W, Nguyen NH, Boland BS, Dulai PS, Pride DT, Bouland D. Comparison of multiplex gastrointestinal pathogen panel and conventional stool testing for evaluation of diarrhea in patients with inflammatory bowel diseases. Dig Dis Sci 2019;64:382–390. https://doi.org/10.1007/s10620-018-5330-y.

    Article  PubMed  Google Scholar 

  59. Shea S, Kubota KA, Maguire H, Gladbach S, Woron A, Atkinson-Dunn R. Clinical microbiology laboratories’ adoption of culture-independent diagnostic tests is a threat to foodborne-disease surveillance in the United States. J Clin Microbiol 2017;55:10–19.

    PubMed  Google Scholar 

  60. Voetsch AC, Angulo FJ, Rabatsky-Ehr T, Shallow S, Cassidy M, Thomas SM, et al. Laboratory practices for stool-specimen culture for bacterial pathogens, including Escherichia coli O157:H7, in the FoodNet sites, 1995–2000. Clin Infect Dis 2004;38:S190–S197.

    PubMed  Google Scholar 

  61. Gu W, Dutta V, Patrick M, Bruce BB, Geissler A, Huang J. Statistical adjustment of culture-independent diagnostic tests for trend analysis in the Foodborne Diseases Active Surveillance Network (FoodNet), USA. Int J Epidemiol 2018;47:1613–1622.

    PubMed  Google Scholar 

  62. Imdad A, Retzer F, Thomas LS, McMillian M, Garman K, Rebeiro PF. Impact of culture-independent diagnostic testing on recovery of enteric bacterial infections. Clin Infect Dis 2018;66:1892–1898.

    PubMed  Google Scholar 

  63. Iwamoto M, Huang JY, Cronquist AB, Medus C, Hurd S, Zansky S. Bacterial enteric infections detected by culture-independent diagnostic tests–FoodNet, United States, 2012–2014. MMWR Morb Mortal Wkly Rep 2015;64:252–257.

    PubMed  PubMed Central  Google Scholar 

  64. Riddle MS, DuPont HL, Connor BA. ACG clinical guideline: diagnosis, treatment, and prevention of acute diarrheal infections in adults. Am J Gastroenterol 2016;111:602–622.

    CAS  PubMed  Google Scholar 

  65. Schiller LR, Pardi DS, Sellin JH. Chronic diarrhea: diagnosis and management. Clin Gastroenterol Hepatol 2017;15:182-193 e3.

    PubMed  Google Scholar 

  66. Duplessis CA, Gutierrez RL, Porter CK. Review: chronic and persistent diarrhea with a focus in the returning traveler. Trop Dis Travel Med Vaccines 2017;3:9.

    PubMed  PubMed Central  Google Scholar 

  67. Smalley W, Falck-Ytter C, Carrasco Labra AAGA. Clinical practice guidelines on the laboratory evaluation of functional diarrhea and diarrhea-predominant irritable bowel syndrome in adults (IBS-D). Gastroenterology 2019;157:851–854.

    PubMed  Google Scholar 

  68. Carrasco-Labra A, Lytvyn L, Falck-Ytter Y, et al. AGA technical review on the evaluation of functional diarrhea and diarrhea-predominant irritable bowel syndrome in adults (IBS-D). Gastroenterology 2019;157:859–880.

    CAS  PubMed  Google Scholar 

  69. Schiller LR. Evaluation of chronic diarrhea and irritable bowel syndrome with diarrhea in adults in the era of precision medicine. Am J Gastroenterol 2018;113:660–669.

    PubMed  Google Scholar 

  70. Pisipati S, Connor BA, Riddle MS. Updates on the epidemiology, pathogenesis, diagnosis, and management of postinfectious irritable bowel syndrome. Curr Opin Infect Dis 2020;33:411–418.

    PubMed  Google Scholar 

  71. Barbara G, Grover M, Bercik P, et al. Rome foundation working team report on post-infection irritable bowel syndrome. Gastroenterology 2019;156:46-58 e7.

    PubMed  Google Scholar 

  72. Limsrivilai J, Saleh ZM, Johnson LA, et al. Prevalence and effect of intestinal infections detected by a PCR-based stool test in patients with inflammatory bowel disease. Dig Dis Sci 2020;65:3287–3296. https://doi.org/10.1007/s10620-020-06071-2.

    Article  CAS  PubMed  Google Scholar 

  73. Axelrad JE, Joelson A, Nobel YR, et al. Enteric infection in relapse of inflammatory bowel disease: the utility of stool microbial PCR testing. Inflamm Bowel Dis 2017;23:1034–1039.

    PubMed  Google Scholar 

  74. Axelrad JE, Joelson A, Green PH, et al. Enteric infections are common in patients with flares of inflammatory bowel disease. Am J Gastroenterol 2018;113:1530–1539.

    PubMed  PubMed Central  Google Scholar 

  75. Hong S, Zaki TA, Main M, et al. Comparative evaluation of conventional stool testing and multiplex molecular panel in outpatients with relapse of inflammatory bowel disease. Inflamm Bowel Dis, 2021.

  76. Angarone M, Snydman DR, AST ID Community of Practice. Diagnosis and management of diarrhea in solid-organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant, 2019;33:13550.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank K. Friedenberg.

Ethics declarations

Conflicts of interest

Our submitted work is original and has not been published elsewhere in any form or language. None of the authors has or had a relationship with any of the commercial entities listed in this manuscript, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sood, N., Carbell, G., Greenwald, H.S. et al. Is the Medium Still the Message? Culture-Independent Diagnosis of Gastrointestinal Infections. Dig Dis Sci 67, 16–25 (2022). https://doi.org/10.1007/s10620-021-07330-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-021-07330-6

Keywords

Navigation