Skip to main content

Meta-Analysis of the Composition of Human Intestinal Gases

Abstract

Background

Understanding intestinal gases volume and composition may contribute to diagnosing digestive diseases and the microbiome's status. This meta-analysis aimed to define the composition of human intestinal gases and changes associated with diet.

Methods

Studies were identified by systematic research of the MEDLINE(Ovid), Scopus, and Cochrane databases. Studies that measured the concentration of intestinal gases in healthy adult humans were retrieved. The JBI critical appraisal tool was used to evaluate the risk of bias. The primary outcomes analysed were the concentration of the most prevalent colonic gases. Participants were divided into groups according to dietary fibre content.

Results

Eleven studies were included. The following gases were identified in similar concentrations across all studies (mean ± standard deviation): nitrogen (65.1 ± 20.89%), oxygen (2.3 ± 0.98%), carbon dioxide (9.9 ± 1.6%), hydrogen (2.9 ± 0.7%), and methane (14.4 ± 3.7%). Differences according to the dietary fibre were observed, with a positive correlation between fibre and volume of gas produced, particularly in fermented gases (carbon dioxide, hydrogen, and methane).

Discussion

The meta-analysis has found defined concentrations of the five most common gases present in human colonic gas. Limitations included heterogenic methodologies, a low number of participants, and few recent studies. These findings may be helpful in diagnostic applications where colonic gas volume and composition are crucial factors, including functional disorders, microbiome analyses, and bowel perforation diagnostics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Abbreviations

CO2 :

Carbon dioxide

CH4 :

Methane

GC:

Gas chromatography

H2 :

Hydrogen

H2S:

Hydrogen sulphide

IBS:

Irritable bowel syndrome

N2 :

Nitrogen

O2 :

Oxygen

PPM:

Parts per million

SRB:

Sulphate-reducing bacteria

References

  1. 1.

    King TS, Elia M, Hunter JO. Abnormal colonic fermentation in irritable bowel syndrome. Lancet. 1998;352:1187–1189.

    CAS  Article  Google Scholar 

  2. 2.

    Espey MG. Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. Free Radic Biol Med. 2013;55:130–140.

    CAS  Article  Google Scholar 

  3. 3.

    Major G, Pritchard S, Murray K, Alappadan JP, Hoad CL, Marciani L et al. Colon hypersensitivity to distension, rather than excessive gas production, produces carbohydrate-related symptoms in individuals with irritable bowel syndrome. Gastroenterology. 2017;152:124–133.

    Article  Google Scholar 

  4. 4.

    Rumessen JJ, Gudmandhøyer E. Functional bowel-disease: malabsorption and abdominal distress after ingestion of fructose, sorbitol, and fructose-sorbitol mixtures. Gastroenterology. 1988;95:694–700.

    CAS  Article  Google Scholar 

  5. 5.

    Shin W. Medical applications of breath hydrogen measurements. Anal Bioanal Chem. 2014;406:3931–3939.

    CAS  Article  Google Scholar 

  6. 6.

    Ong DK, Mitchell SB, Barrett JS, Shepherd SJ, Irving PM, Biesiekierski JR et al. Manipulation of dietary short chain carbohydrates alters the pattern of gas production and genesis of symptoms in irritable bowel syndrome. J Gastroenterol Hepatol. 2010;25:1366–1373.

    CAS  Article  Google Scholar 

  7. 7.

    Calloway DH, Murphy EL. The use of expired air to measure intestinal gas formation. Ann NY Acad Sci. 1968;150:82–95.

    CAS  Article  Google Scholar 

  8. 8.

    Murphy EL, Calloway DH. The effect of antibiotic drugs on the volume and composition of intestinal gas from beans. Am J Dig Dis. 1972;17:639–642.

    CAS  Article  Google Scholar 

  9. 9.

    Steggerda FR. Gastrointestinal gas following food consumption. Ann NY Acad Sci. 1968;150:57–66.

    CAS  Article  Google Scholar 

  10. 10.

    Suarez F, Furne J, Springfield J, Levitt M. Insights into human colonic physiology obtained from the study of flatus composition. Am J Physiol. 1997;272:G1028-1033.

    CAS  PubMed  Google Scholar 

  11. 11.

    Tomlin J, Lowis C, Read NW. Investigation of normal flatus production in healthy volunteers. Gut. 1991;32:665–669.

    CAS  Article  Google Scholar 

  12. 12.

    Wagner JR, Carson JF, Becker R, Gumbmann MR, Danhof IE. Comparative flatulence activity of beans and bean fractions for man and the rat. J Nutrit. 1977;107:680–689.

    CAS  Article  Google Scholar 

  13. 13.

    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563.

    CAS  Article  Google Scholar 

  14. 14.

    Iweala OI, Nagler CR. Immune privilege in the gut: the establishment and maintenance of non-responsiveness to dietary antigens and commensal flora. Immunol Rev. 2006;213:82–100.

    Article  Google Scholar 

  15. 15.

    Wynne EK, Azagury DE. Novel device to detect enterotomies in real time during laparoscopy: first in human trial during Roux-en-y gastric bypass. Surg Endosc. 2019;33:1687–1692.

    Article  Google Scholar 

  16. 16.

    Kirk E. The quantity and composition of human colonic flatus. Gastroenterology. 1949;12:782–794.

    CAS  Article  Google Scholar 

  17. 17.

    Calloway DH, Hickey CA, Murphy EL. Reduction of intestinal gas-forming properties of legumes by traditional and experimental food processing methods. J Food Sci. 1971;36:251–255.

    CAS  Article  Google Scholar 

  18. 18.

    Levitt MD. Volume and composition of human intestinal gas determined by means of an intestinal washout technic. N Engl J Med. 1971;284:1394–1398.

    CAS  Article  Google Scholar 

  19. 19.

    Marthinsen D, Fleming SE. Excretion of breath and flatus gases by humans consuming high-fiber diets. J Nutrit. 1982;112:1133–1143.

    CAS  Article  Google Scholar 

  20. 20.

    Kalantar-Zadeh K, Berean KJ, Ha N, Chrimes AF, Xu K, Grando D et al. A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. Nat Elect. 2018;1:79–87.

    Article  Google Scholar 

  21. 21.

    Levitt MD, Bond JH Jr. Volume, composition, and source of intestinal gas. Gastroenterology. 1970;59:921–929.

    CAS  Article  Google Scholar 

  22. 22.

    Levitt MD. Intestinal gas. Postgrad Med. 1975;57:77–81.

    CAS  Article  Google Scholar 

  23. 23.

    Scaldaferri F, Nardone O, Lopetuso LR, Petito V, Bibbò S, Laterza L et al. Intestinal gas production and gastrointestinal symptoms: from pathogenesis to clinical implication. Eur Rev Med Pharmacol Sci. 2013;17:2–10.

    PubMed  Google Scholar 

  24. 24.

    Carbonero F, Benefiel AC, Gaskins HR. Contributions of the microbial hydrogen economy to colonic homeostasis. Nat Rev Gastroenterol Hepatol. 2012;9:504–518.

    CAS  Article  Google Scholar 

  25. 25.

    Linden DR. Hydrogen sulfide signaling in the gastrointestinal tract. Antioxid Redox Signal. 2014;20:818–830.

    CAS  Article  Google Scholar 

  26. 26.

    Guidotti TL. Hydrogen sulfide intoxication. Handb Clin Neurol. 2015;131:111–133.

    Article  Google Scholar 

  27. 27.

    Suarez FL, Springfield J, Levitt MD. Identification of gases responsible for the odour of human flatus and evaluation of a device purported to reduce this odour. Gut. 1998;43:100–104.

    CAS  Article  Google Scholar 

  28. 28.

    Gibson GR, Macfarlane GT, Cummings JH. Sulphate reducing bacteria and hydrogen metabolism in the human large intestine. Gut. 1993;34:437–439.

    CAS  Article  Google Scholar 

  29. 29.

    Perez F, Accarino A, Azpiroz F, Quiroga S, Malagelada JR. Gas distribution within the human gut: effect of meals. Am J Gastroenterol. 2007;102:842–849.

    Article  Google Scholar 

  30. 30.

    Harder H, Serra J, Azpiroz F, Passos MC, Aguade S, Malagelada JR. Intestinal gas distribution determines abdominal symptoms. Gut. 2003;52:1708–1713.

    CAS  Article  Google Scholar 

  31. 31.

    Saltzberg DM, Levine GM, Lubar C. Impact of age, sex, race, and functional complaints on hydrogen (H2) production. Dig Dis Sci. 1988;33:308–313.

    CAS  Article  Google Scholar 

  32. 32.

    Bond JH, Engel RR, Levitt MD. Factors influencing pulmonary methane excretion in man. An indirect method of studying the in situ metabolism of the methane-producing colonic bacteria. J Exp Med. 1971;133:572–588.

    CAS  Article  Google Scholar 

  33. 33.

    Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A et al. A new genomic blueprint of the human gut microbiota. Nature. 2019;568:499–504.

    CAS  Article  Google Scholar 

  34. 34.

    Hill P, Muir JG, Gibson PR. Controversies and Recent Developments of the Low-FODMAP Diet. Gastroenterol Hepatol (N Y). 2017;13:36–45.

    Google Scholar 

  35. 35.

    Pogrund RS, Steggerda FR. Influence of gaseous transfer between the colon and blood stream on percentage gas compositions of intestinal flatus in man. Am J Physiol. 1948;153:475–482.

    CAS  Article  Google Scholar 

  36. 36.

    Christl SU, Murgatroyd PR, Gibson GR, Cummings JH. Production, metabolism, and excretion of hydrogen in the large intestine. Gastroenterology. 1992;102:1269–1277.

    CAS  Article  Google Scholar 

  37. 37.

    Levitt MD. Production and excretion of hydrogen gas in man. N Engl J Med. 1969;281:122–127.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Greg O’Grady.

Ethics declarations

Conflict interests

The authors declare no conflict of interest.

Availability of data

Template data collection forms, data extracted from included studies, data used for analyses, and analytic code are available upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 5 and 6.

Table 5 JBI critical appraisal for analytical cross-sectional studies
Table 6 JBI critical appraisal for quasi-experimental (nonrandomised experimental) studies

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Modesto, A., Cameron, NR., Varghese, C. et al. Meta-Analysis of the Composition of Human Intestinal Gases. Dig Dis Sci (2021). https://doi.org/10.1007/s10620-021-07254-1

Download citation

Keywords

  • Intestinal gas
  • Biomarker
  • Flatus composition
  • Diet