Skip to main content

Microscopic Colitis Patients Possess a Perturbed and Inflammatory Gut Microbiota

Abstract

Background

Microscopic colitis (MC), an inflammatory disease of the colon, is characterized by chronic non-bloody diarrhea with characteristic inflammation and for some, collagen deposits in mucosal biopsies. The etiology of MC is unclear, although previous findings implicate luminal factors and thus the gut microbiome. However, the relationships between fecal microbiota and MC are relatively unexplored.

Methods

Stool microbiota of MC (n = 15) and healthy controls (HC; n = 21) were assessed by 16S rRNA V4 amplicon sequencing and analysis performed in QIIME. Gut microbiota functions were predicted using Piphillin and inflammatory potential assessed using an in vitro HT29 colonocyte cell assay.

Results

MC patient fecal microbiota were less diverse (Faiths index; p < 0.01) and compositionally distinct (PERMANOVA, weighted UniFrac, R2 = 0.08, p = 0.02) compared with HC subjects. MC microbiota were significantly depleted of members of the Clostridiales, enriched for Prevotella and more likely to be dominated by this genus (Chi2 = 0.03). Predicted pathways enriched in MC microbiota included those related to biosynthesis of antimicrobials, and sphingolipids, to glycan degradation, host defense evasion, and Th17 cell differentiation and activation. In vitro, exposure of cultured colonocytes to cell-free products of MC patient feces indicates reduced gene expression of IL-1B and occludin and increased GPR119 and the lymphocyte chemoattractant CCL20.

Conclusion

MC gut microbiota are distinct from HC and characterized by lower bacterial diversity and Prevotella enrichment and distinct predicted functional pathways. Limited in vitro experiments indicate that compared with cell-free products from healthy fecal microbiota, MC microbiota induce distinct responses when co-cultured with epithelial cells, implicating microbiota perturbation in MC-associated mucosal dysfunction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Münch A, Aust D, Bohr J, Bonderup O, Fernández Bañares F, Hjortswang H et al. Microscopic colitis: current status, present and future challenges: Statements of the European Microscopic Colitis Group. J Crohn’s Colitis. 2012;6:932–945. https://doi.org/10.1016/j.crohns.2012.05.014.

    Article  Google Scholar 

  2. Weimers P, Ankersen DV, Lophaven S, Bonderup OK, Münch A, Løkkegaard ECL et al. Incidence and prevalence of microscopic colitis between 2001 and 2016: a Danish nationwide cohort study. J Crohn’s Colitis. 2021;14:1717–1723.

    Article  Google Scholar 

  3. Pisani LF, Tontini GE, Vecchi M, Pastorelli L. Microscopic colitis: what do we know about pathogenesis? Inflamm Bowel Dis. 2016;22:450–458.

    Article  PubMed  Google Scholar 

  4. Tong J, Zheng Q, Zhang C, Lo R, Shen J, Ran Z. Incidence, prevalence, and temporal trends of microscopic colitis: a systematic review. Am J Gastroenterol 2015;110:265–276. https://doi.org/10.1038/ajg.2014.431.

    Article  PubMed  Google Scholar 

  5. Chetty R, Govender D. Lymphocytic and collagenous colitis: an overview of so-called microscopic colitis. Nat Rev Gastroenterol Hepatol. 2012;9:209–218.

    Article  CAS  PubMed  Google Scholar 

  6. Burke KE, Ananthakrishnan AN, Lochhead P, Liu PH, Olen O, Ludvigsson JF et al. Identification of menopausal and reproductive risk factors for microscopic colitis: results from the nurses’ health study. Gastroenterology. 2018;155:1764–1775.

    Article  PubMed  Google Scholar 

  7. Roth B, Manjer J, Ohlsson B. Microscopic colitis and reproductive factors related to exposure to estrogens and progesterone. Drug Target Insights. 2013;7:53–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375:2369–2379.

    Article  CAS  PubMed  Google Scholar 

  9. Durack J, Lynch SV. The gut microbiome: relationships with disease and opportunities for therapy. J Exp Med. 2019;216:20–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. 2019;4:293–305.

    Article  CAS  PubMed  Google Scholar 

  11. Mar JS, LaMere BJ, Lin DL, Levan S, Nazareth M, Mahadevan U et al. Disease severity and immune activity relate to distinct interkingdom gut microbiome states in ethnically distinct ulcerative colitis patients. MBio. 2016;4:e01072-e1116.

    Google Scholar 

  12. Fischer H, Holst E, Karlsson F, Benoni C, Toth E, Olesen M et al. Altered microbiota in microscopic colitis. Gut. 2015;64:1185–1186.

    Article  PubMed  Google Scholar 

  13. Morgan DM, Cao Y, Miller K, McGoldrick J, Bellavance D, Chin SM et al. Microscopic colitis is characterized by intestinal dysbiosis. Clin Gastroenterol Hepatol. 2020;18:984–986.

    Article  PubMed  Google Scholar 

  14. Millien V, Rosen D, Hou J, Shah R. Proinflammatory sulfur-reducing bacteria are more abundant in colonic biopsies of patients with microscopic colitis compared to healthy controls. Dig Dis Sci. 2019;64:432–438. https://doi.org/10.1007/s10620-018-5313-z.

    Article  CAS  PubMed  Google Scholar 

  15. Rindom Krogsgaard L, Kristian Munck L, Bytzer P, Wildt S. An altered composition of the microbiome in microscopic colitis is driven towards the composition in healthy controls by treatment with budesonide. Scand J Gastroenterol. 2019;54:446–452.

    Article  CAS  PubMed  Google Scholar 

  16. Carstens A, Dicksved J, Nelson R, Lindqvist M, Andreasson A, Bohr J et al. The gut microbiota in collagenous colitis shares characteristics with inflammatory bowel disease-associated dysbiosis. Clin Transl Gastroenterol. 2019;10:1–10.

    Article  Google Scholar 

  17. Järnerot G, Tysk C, Bohr J, Eriksson S. Collagenous colitis and fecal stream diversion. Gastroenterology. 1995;109:449–455.

    Article  PubMed  Google Scholar 

  18. Günaltay S, Rademacher L, Hörnquist EH, Bohr J. Clinical and immunologic effects of faecal microbiota transplantation in a patient with collagenous colitis. World J Gastroenterol. 2017;23:1319–1324.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Daferera N, Kumawat AK, Hultgren-Hörnquist E, Ignatova S, Ström M, Münch A. Fecal stream diversion and mucosal cytokine levels in collagenous colitis: a case report. World J Gastroenterol. 2015;21:6065–6071.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kirk KF, Nielsen HL, Thorlacius-Ussing O, Nielsen H. Optimized cultivation of Campylobacter concisus from gut mucosal biopsies in inflammatory bowel disease. Gut Pathog. 2016;8:27.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nielsen HL, Kirk KF, Bodilsen J, Ejlertsen T, Nielsen H. Azithromycin vs Placebo for the clinical outcome in Campylobacter concisus diarrhoea in adults: a randomized, double-blinded, placebo-controlled clinical trial. PLoS One. 2016;11:1–11.

    Article  Google Scholar 

  22. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Magoč T, Salzberg SL. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–2963.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461.

    Article  CAS  PubMed  Google Scholar 

  25. Caporaso JG, Bittinger K, Bushman FD, Desantis TZ, Andersen GL, Knight R. PyNAST: A flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010;26:266–267.

    Article  CAS  PubMed  Google Scholar 

  26. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–5072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Price MN, Dehal PS, Arkin AP. Fasttree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641–1650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Iwai S, Weinmaier T, Schmidt BL, Albertson DG, Poloso NJ, Dabbagh K et al. Piphillin: Improved prediction of metagenomic content by direct inference from human microbiomes. PLoS One. 2016;11:1–18.

    Article  Google Scholar 

  29. Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22:1187–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R. EMPeror: A tool for visualizing high-throughput microbial community data. Gigascience. 2013;2:2–5.

    Article  Google Scholar 

  31. Durack J, Huang YJ, Nariya S, Christian LS, Mark Ansel K, Beigelman A et al. Bacterial biogeography of adult airways in atopic asthma. Microbiome. 2018;6:1–16.

    Article  Google Scholar 

  32. Shenoy MK, Fadrosh DW, Lin DL, Worodria W, Byanyima P, Musisi E et al. Gut microbiota in HIV-pneumonia patients is related to peripheral CD4 counts, lung microbiota, and in vitro macrophage dysfunction. Microbiome. 2019;7:1–16.

    Article  Google Scholar 

  33. Quigley EMM. Gut bacteria in health and disease. Gastroenterol Hepatol. 2013;9:560–569.

    Google Scholar 

  34. Consortium THMP. Hmp Ref 2. Nature. 2013;486:207–214.

    Google Scholar 

  35. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lopetuso LR, Scaldaferri F, Petito V, Gasbarrini A. Commensal Clostridia: Leading players in the maintenance of gut homeostasis. Gut Pathog. 2013;5(1):23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Nielsen HL, Dalager-Pedersen M, Nielsen H. High risk of microscopic colitis after Campylobacter concisus infection: population-based cohort study. Gut. 2020;69:1952–1958.

    Article  PubMed  Google Scholar 

  38. Glassner KL, Abraham BP, Quigley EMM. The microbiome and inflammatory bowel disease. J Allergy Clin Immunol. 2020;145:16–27. https://doi.org/10.1016/j.jaci.2019.11.003.

    Article  CAS  PubMed  Google Scholar 

  39. Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology. 2017;151:363–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife. 2013;2:1–20.

    Article  CAS  Google Scholar 

  41. Alpizar-Rodriguez D, Lesker TR, Gronow A, Gilbert B, Raemy E, Lamacchia C et al. Prevotella copri in individuals at risk for rheumatoid arthritis. Ann Rheum Dis. 2019;78:590–593.

    Article  CAS  PubMed  Google Scholar 

  42. Pianta A, Arvikar S, Strle K, Drouin EE, Wang Q, Costello CE et al. Evidence for immune relevance of prevotella copri, a gut microbe, patients with rheumatoid arthritis. Arthritis Rheumatol. 2017;69:964–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Koskela RM, Niemelä SE, Karttunen TJ, Lehtola JK. Clinical characteristics of collagenous and lymphocytic colitis. Scand J Gastroenterol. 2004;39:837–845.

    Article  CAS  PubMed  Google Scholar 

  44. Kao KT, Pedraza BA, McClune AC, Rios DA, Mao Y-Q, Zuch RH et al. Microscopic colitis: A large retrospective analysis from a health maintenance organization experience. World J Gastroenterol. 2009;15:3122.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cani PD, de Vos WM. Next-generation beneficial microbes: the case of akkermansia muciniphila. Front Microbiol. 2017;22:1–8.

    Google Scholar 

  46. Benítez-Páez A, Gómez del Pugar EM, López-Almela I, Moya-Pérez Á, Codoñer-Franch P, Sanz Y. Depletion of blautia species in the microbiota of obese children relates to intestinal inflammation and metabolic phenotype worsening. Systems. 2020;5:1–13.

    Google Scholar 

  47. Jenq RR, Taur Y, Devlin SM, Ponce DM, Goldberg JD, Ahr KF et al. Intestinal Blautia is associated with reduced death from graft-versus-host disease. Biol Blood Marrow Transplant. 2015;21:1373–1383.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lee JW, Wang P, Kattah MG, Youssef S, Steinman L, DeFea K et al. Differential regulation of chemokines by IL-17 in colonic epithelial cells. J Immunol. 2008;181:6536–6545.

    Article  CAS  PubMed  Google Scholar 

  49. Lee Y, Jun H. Anti-inflammatory effects of GLP-1-based therapies beyond glucose control. Mediators Inflamm. 2016;2016:1–11.

    Google Scholar 

  50. Abdel Hadi L, Di Vito C, Riboni L. Fostering Inflammatory Bowel Disease: Sphingolipid Strategies to Join Forces. Mediators Inflamm. 2016;2016:3827684.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from the Lundbeck Foundation to the Innovation Centre, Denmark, and UCSF to fund the Danish American Research Exchange (DARE) fellowship program for Sandra Hertz

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Hertz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Stool samples used in this study were collected in clinical studies approved by the Regional Ethics Committee of Northern Jutland, Denmark (N-20130070).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hertz, S., Durack, J., Kirk, K.F. et al. Microscopic Colitis Patients Possess a Perturbed and Inflammatory Gut Microbiota. Dig Dis Sci 67, 2433–2443 (2022). https://doi.org/10.1007/s10620-021-07045-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-021-07045-8

Keywords

  • Dysbiosis
  • Gastrointestinal microbiota
  • Microscopic colitis
  • Prevotella
  • 16S rRNA sequencing