Skip to main content

Advertisement

Log in

Vancomycin-Induced Changes in Host Immunity and Behavior: Comparative Genomic and Metagenomic Analysis in C57BL/6 and BALB/c Mice

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

The consequence of treatment with antibiotics on the gut microbiota can be destructive. The antibiotics, however, can be utilized to understand the role of gut microbiota on the host physiology.

Aim

Earlier, we reported the efficacy of vancomycin in gut microbiota perturbation. We continued to understand the effect of restoration kinetics of perturbed gut microbiota on the immunity and behavior of Th1 (C57BL/6)- and Th2 (BALB/c)-biased mice.

Methods

We studied restoration kinetics of the gut microbiota for two months following the withdrawal of vancomycin treatment in both mice strains. We analyzed cecal microbiome composition, different behavioral assays, and expression of select genes associated with stress and barrier function in gut and brain.

Results

Metagenomic analysis of gut microbiota revealed that the treatment with vancomycin caused a significant decrease in the relative abundance of Firmicutes and Bacteroidetes phyla with a time-dependent increase in Proteobacteria and Verrucomicrobia phyla. Maximum restoration (> 70%) of gut microbiota happened by the 15th day of withdrawal of vancomycin. BALB/c mice showed a more efficient restoration of gut microbiota compared to C57BL/6 mice. We established the correlation patterns of gut microbiota alteration and its effect on (a) the behavior of mice, (b) expression of key brain molecules, and (c) immunity-related genes.

Conclusions

The results revealed that the gut microbiome profiling, behavior, and immune responses varied significantly between Th1- and Th2-biased mice. By withdrawing the treatment with vancomycin of major gut microbes, important physiological and behavioral changes of both mice strains returned to the normal (untreated control) level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Code availability

SRA accession: PRJNA566053, PRJNA660929, PRJNA660934.

References

  1. Guinane CM, Cotter PD. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Ther Adv Gastroenterol. 2013;6:295–308.

    Article  Google Scholar 

  2. Mandal RS, Saha S, Das S. Metagenomic surveys of gut microbiota. Genom Proteom Bioinform. 2015;13:148–158.

    Article  Google Scholar 

  3. Ubeda C, Djukovic A, Isaac S. Roles of the intestinal microbiota in pathogen protection. Clin Transl Immunol. 2017;6:e128.

    Article  CAS  Google Scholar 

  4. Contijoch EJ, Britton GJ, Yang C, et al. Gut microbiota density influences host physiology and is shaped by host and microbial factors. Elife. 2018;8:277095.

    Google Scholar 

  5. Missaghi B, Barkema HW, Madsen KL, et al. Perturbation of the human microbiome as a contributor to inflammatory bowel disease. Pathogens. 2014;3:510–527.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carding S, Verbeke K, Vipond DT, et al. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 2015;26:26191.

    PubMed  Google Scholar 

  7. Francino MP. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol. 2016;6:1543.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fujisaka S, Ussar S, Clish C, et al. Antibiotic effects on gut microbiota and metabolism are host dependent. J Clin Invest. 2016;126:4430–4443.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jernberg C, Löfmark S, Edlund C, et al. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology. 2010;156:3216–3223.

    Article  CAS  PubMed  Google Scholar 

  10. Dethlefsen L, Huse S, Sogin ML, et al. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008;6:e280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Looft T, Allen HK. Collateral effects of antibiotics on mammalian gut microbiomes. Gut Microbes. 2012;3:463–467.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dunlop SP, Hebden J, Campbell E, et al. Abnormal intestinal permeability in subgroups of diarrhea-predominant irritable bowel syndromes. Am J Gastroenterol. 2006;101:1288.

    Article  PubMed  Google Scholar 

  13. Bosi E, Molteni L, Radaelli MG, et al. Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia. 2006;49:2824–2827.

    Article  CAS  PubMed  Google Scholar 

  14. Isaac S, Scher JU, Djukovic A, et al. Short-and long-term effects of oral vancomycin on the human intestinal microbiota. J Antimicrob Chemother. 2016;72:128–136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Vrieze A, Out C, Fuentes S, et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol. 2014;60:824–831.

    Article  CAS  PubMed  Google Scholar 

  16. Sun L, Zhang X, Zhang Y, et al. Antibiotic-induced disruption of gut microbiota alters local metabolomes and immune responses. Front Cell Infect Microbiol. 2019;9:99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ray P, Pandey U, Aich P. Comparative analysis of beneficial effects of vancomycin treatment on Th1‐ and Th2‐biased mice and the role of gut microbiota. J Appl Microbiol. Available from: https://onlinelibrary.wiley.com/doi/10.1111/jam.14853.

  18. Fransen F, Zagato E, Mazzini E, et al. BALB/c and C57BL/6 mice differ in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity. Immunity. 2015;43:527–540.

    Article  CAS  PubMed  Google Scholar 

  19. Watanabe H, Numata K, Ito T, et al. Innate immune response in Th1- and Th2-dominant mouse strains. Shock. 2004;22(5):460–466.

    Article  CAS  PubMed  Google Scholar 

  20. Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: regulation by the microbiome. Neurobiol Stress. 2017;7:124–136.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Goehler LE, Park SM, Opitz N, et al. Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: possible anatomical substrates for viscerosensory modulation of exploratory behavior. Brain Behav Immun. 2008;22:354–366.

    Article  CAS  PubMed  Google Scholar 

  22. Lyte M, Li W, Opitz N, et al. Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiol Behav. 2006;89:350–357.

    Article  CAS  PubMed  Google Scholar 

  23. Bercik P, Denou E, Collins J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141:599–609.

    Article  CAS  PubMed  Google Scholar 

  24. Park AJ, Collins J, Blennerhassett PA, et al. Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterol Motil. 2013;25:e575–e733.

    Article  Google Scholar 

  25. Li K, Nakajima M, Ibañez-Tallon I, et al. A cortical circuit for sexually dimorphic oxytocin-dependent anxiety behaviors. Cell. 2016;167:60–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fasano A, Shea-Donohue T. Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat Rev Gastroenterol Hepatol. 2005;2:416.

    Article  CAS  Google Scholar 

  27. Luczynski P, McVey Neufeld K-A, Oriach CS, et al. Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int J Neuropsychopharmacol. 2016;19:pyw020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Erikstrup LT, Aarup M, Hagemann-Madsen R, et al. Treatment of Clostridium difficile infection in mice with vancomycin alone is as effective as treatment with vancomycin and metronidazole in combination. BMJ Open Gastroenterol. 2015;2:e000038.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Patel S, Preuss CV, Bernice F. Vancomycin. Treasure Island: StatPearls Publishing; 2019.

    Google Scholar 

  30. Fröhlich EE, Farzi A, Mayerhofer R, et al. Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav Immun. 2016;56:140–155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kastenberger I, Lutsch C, Herzog H, et al. Influence of sex and genetic background on anxiety-related and stress-induced behaviour of prodynorphin-deficient mice. PLoS One. 2012;7:e34251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. DeSantis TZ, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–5072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. DeSantis TZ, Hugenholtz P, Keller K, et al. NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res. 2006;34:394–399.

    Article  CAS  Google Scholar 

  35. Frank DN, Amand ALS, Feldman RA, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci. 2007;104:13780–13785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou Y, Zhi F. Lower level of bacteroides in the gut microbiota is associated with inflammatory bowel disease: a meta-analysis. Biomed Res Int. 2016;. https://doi.org/10.1155/2016/5828959.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Vazquez-Torres A, Vallance BA, Bergman MA, et al. Toll-like receptor 4 dependence of innate and adaptive immunity to Salmonella: importance of the Kupffer cell network. J Immunol. 2004;172:6202–6208.

    Article  CAS  PubMed  Google Scholar 

  38. Woting A, Blaut M. Small intestinal permeability and gut-transit time determined with low and high molecular weight fluorescein isothiocyanate-dextrans in C3H mice. Nutrients. 2018;10:685.

    Article  PubMed Central  CAS  Google Scholar 

  39. Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007;2:322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Desbonnet L, Garrett L, Clarke G, et al. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience. 2010;170:1179–1188.

    Article  CAS  PubMed  Google Scholar 

  41. Seibenhener ML, Wooten MC. Use of the open field maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp JoVE. 2015;96:e52434.

    Google Scholar 

  42. Dantzer R, O’Connor JC, Freund GG, et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9:46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Clarke G, Grenham S, Scully P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2013;18:666.

    Article  CAS  PubMed  Google Scholar 

  44. Desbonnet L, Clarke G, Shanahan F, et al. Microbiota is essential for social development in the mouse. Mol Psychiatry. 2014;19:146.

    Article  CAS  PubMed  Google Scholar 

  45. Heijtz RD, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci. 2011;108:3047–3052.

    Article  CAS  PubMed Central  Google Scholar 

  46. Neufeld KAM, Kang N, Bienenstock J, et al. Effects of intestinal microbiota on anxiety-like behavior. Commun Integr Biol. 2011;4:492–494.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Suliman S, Hemmings SMJ, Seedat S. Brain-derived neurotrophic factor (BDNF) protein levels in anxiety disorders: systematic review and meta-regression analysis. Front Integr Neurosci. 2013;7:55.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Saunders PR, Santos J, Hanssen NPM, et al. Physical and psychological stress in rats enhances colonic epithelial permeability via peripheral CRH. Dig Dis Sci. 2002;47:208–215. https://doi.org/10.1023/A:1013204612762.

    Article  PubMed  Google Scholar 

  49. Neufeld KM, Kang N, Bienenstock J, et al. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 2011;23:e119–e255.

    Article  Google Scholar 

  50. Huo R, Zeng B, Zeng L, et al. Microbiota modulate anxiety-like behavior and endocrine abnormalities in hypothalamic-pituitary-adrenal axis. Front Cell Infect Microbiol. 2017;7:489.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Dantzer R, Konsman J-P, Bluthé R-M, et al. Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent? Auton Neurosci. 2000;85:60–65.

    Article  CAS  PubMed  Google Scholar 

  52. Lee SH. Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intest Res. 2015;13:11–18.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Al-Sadi R, Guo S, Ye D, et al. TNF-α modulation of intestinal epithelial tight junction barrier is regulated by ERK1/2 activation of Elk-1. Am J Pathol. 2013;183:1871–1884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2016;14:20.

    Article  CAS  PubMed  Google Scholar 

  55. Reikvam DH, Erofeev A, Sandvik A, et al. Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PLoS One. 2011;6:e17996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wells JM, Brummer RJ, Derrien M, et al. Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Liver Physiol. 2017;312:G171–G193.

    Google Scholar 

  57. Gutzeit C, Magri G, Cerutti A. Intestinal IgA production and its role in host-microbe interaction. Immunol Rev. 2014;260:76–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Antonini M, Lo Conte M, Sorini C, et al. How the interplay between the commensal microbiota, gut barrier integrity and mucosal immunity regulates brain autoimmunity. Front Immunol. 2019;10:1937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Palleja A, Mikkelsen KH, Forslund SK, et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat Microbiol. 2018;3:1255.

    Article  CAS  PubMed  Google Scholar 

  60. Ray P, Pandey U, Aich P. Comparative analysis of beneficial effects of vancomycin treatment on Th1- and Th2-biased mice and role of gut microbiota. bioRxiv; 2019.

  61. Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol. 2004;558:263–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Reis DJ, Ilardi SS, Punt SEW. The anxiolytic effect of probiotics: a systematic review and meta-analysis of the clinical and preclinical literature. PLoS One. 2018;13:e0199041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. McGaughey KD, Yilmaz-Swenson T, Elsayed NM, et al. Relative abundance of Akkermansia spp. and other bacterial phylotypes correlates with anxiety-and depressive-like behavior following social defeat in mice. Sci Rep. 2019;9:1–11.

    Article  CAS  Google Scholar 

  64. Ried K, Travica N, Sali A. The effect of Kyolic aged garlic extract on gut microbiota, inflammation, and cardiovascular markers in hypertensives: the GarGIC trial. Front Nutr. 2018;5:122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Ahmed F, Kerna1 NA, Tulp OL. Managing the F:B ratio in DM; a review of the role of firmicutes and bacteroidetes in diabetes mellitus. Adv Complement Altern Med. 2019;4:295–298

  66. Petra AI, Panagiotidou S, Hatziagelaki E, et al. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther. 2015;37:984–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Akira S, Hemmi H. Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett. 2003;85:85–95.

    Article  CAS  PubMed  Google Scholar 

  68. Boutagy NE, McMillan RP, Frisard MI, et al. Metabolic endotoxemia with obesity: is it real and is it relevant? Biochimie. 2016;124:11–20.

    Article  CAS  PubMed  Google Scholar 

  69. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7:189–200.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Vinolo MAR, Rodrigues HG, Nachbar RT, et al. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3:858–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jang H-M, Lee K-E, Lee H-J, et al. Immobilization stress-induced Escherichia coli causes anxiety by inducing NF-κB activation through gut microbiota disturbance. Sci Rep. 2018;8:1–14.

    Article  Google Scholar 

  72. Soto M, Herzog C, Pacheco JA, et al. Gut microbiota modulate neurobehavior through changes in brain insulin sensitivity and metabolism. Mol Psychiatry. 2018;23:2287–2301. https://doi.org/10.1038/s41380-018-0086-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu Z, Xia B, Saric J, et al. Effects of vancomycin and ciprofloxacin on the NMRI mouse metabolism. J Proteom Res. 2018;17:3565–3573.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The current work (necessary resources to perform the experiment and the infrastructure for the laboratory) was supported by the intra-mural core funding from DAE, GoI through parent institute National Institute of Science Education and Research (NISER). The current work was not supported through any other extra-mural funding except the Ph.D. fellowship to PR by the Council of Scientific and Industrial Research (CSIR), GoI. There is no other funding support to assist the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

PR and UP contributed equally and performed the experiments and drafted the manuscript. DD was associated with behavior related experiments. PR and PA designed the experiments. PA supervised the studies and finalized the manuscript.

Corresponding author

Correspondence to Palok Aich.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Human and animal rights

The authors would like to acknowledge the support of Animal House in maintaining and assisting the experiments with the animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 341 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, P., Pandey, U., Das, D. et al. Vancomycin-Induced Changes in Host Immunity and Behavior: Comparative Genomic and Metagenomic Analysis in C57BL/6 and BALB/c Mice. Dig Dis Sci 66, 3776–3791 (2021). https://doi.org/10.1007/s10620-020-06729-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06729-x

Keywords

Navigation