Skip to main content

Advertisement

Log in

Microbiome of the Aerodigestive Tract in Health and Esophageal Disease

  • MENTORED REVIEW
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

The diverse human gut microbiome is comprised of approximately 40 trillion microorganisms representing up to 1000 different bacterial species. The human microbiome plays a critical role in gut epithelial health and disease susceptibility. While the interaction between gut microbiome and gastrointestinal pathology is increasingly understood, less is known about the interaction between the microbiome and the aerodigestive tract. This review of the microbiome of the aerodigestive tract in health, and alterations in microbiome across esophageal pathologies highlights important findings and areas for future research. First, microbiome profiles are distinct along the aerodigestive tract, spanning the oral cavity to the stomach. In patients with reflux-related disease such as gastro-esophageal reflux disease, Barrett’s esophagus, and esophageal adenocarcinoma, investigators have observed an overall increase in gram negative bacteria in the esophageal microbiome compared to healthy individuals. However, whether differences in microbiome promote disease development, or if these shifts are a consequence of disease remains unknown. Interestingly, use of proton pump inhibitor therapy is also associated with shifts in the microbiome, with distinct shifts and patterns along the aerodigestive tract. The relationship between the human gut microbiome and esophageal pathology is a ripe area for investigation, and further understanding of these pathways may promote development of novel targets in prevention and therapy for esophageal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BE:

Barret esophagus

EAC:

Esophageal adenocarcimoma

GERD:

Gastroesophageal reflux disease

PPI:

Proton pump inhibitor

EOE:

Eosinophilic esophagitis

References

  1. Lacy BE, Spiegel B. Introduction to the gut microbiome special issue. Am J Gastroenterol. 2019;114.

  2. Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214.

    Article  CAS  Google Scholar 

  3. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–1267.

    Article  CAS  PubMed  Google Scholar 

  5. Vindigni SM, Zisman TL, Suskind DL, Damman CJ. The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: a tripartite pathophysiological circuit with implications for new therapeutic directions. Therap Adv Gastroenterol. 2016;9:606–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Andrews ML. Manual of voice treatment: pediatrics through geriatrics. San Diego: Singular Pub. Group; 1999.

    Google Scholar 

  7. Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Arch Microbiol. 2018;200:525–540.

    Article  CAS  PubMed  Google Scholar 

  8. Bik EM, Long CD, Armitage GC, et al. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J. 2010;4:962–974.

    Article  PubMed  Google Scholar 

  9. Krishnan K, Chen T, Paster BJ. A practical guide to the oral microbiome and its relation to health and disease. Oral Dis. 2017;23:276–286.

    Article  CAS  PubMed  Google Scholar 

  10. Mannell A, Plant M, Frolich J. The microflora of the oesophagus. Ann R Coll Surg Engl. 1983;65:152–154.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pei Z, Bini EJ, Yang L, Zhou M, Francois F, Blaser MJ. Bacterial biota in the human distal esophagus. Proc Natl Acad Sci U S A. 2004;101:4250–4255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Norder Grusell E, Dahlén G, Ruth M, et al. Bacterial flora of the human oral cavity, and the upper and lower esophagus. Dis Esophagus. 2013;26:84–90.

    Article  CAS  PubMed  Google Scholar 

  13. De Gaetano GV, Pietrocola G, Romeo L, et al. The Streptococcus agalactiae cell wall-anchored protein PbsP mediates adhesion to and invasion of epithelial cells by exploiting the host vitronectin/α(v) integrin axis. Mol Microbiol. 2018;110:82–94.

    Article  PubMed  CAS  Google Scholar 

  14. Corning B, Copland AP, Frye JW. The esophageal microbiome in health and disease. Curr Gastroenterol Rep. 2018;20:39.

    Article  PubMed  Google Scholar 

  15. Hunt RH, Yaghoobi M. The esophageal and gastric microbiome in health and disease. Gastroenterol Clin North Am. 2017;46:121–141.

    Article  PubMed  Google Scholar 

  16. Shi YC, Cai ST, Tian YP, et al. Effects of proton pump inhibitors on the gastrointestinal microbiota in gastroesophageal reflux disease. Genomics Proteomics Bioinform. 2019;17:52–63.

    Article  Google Scholar 

  17. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015;21:8787–8803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Andersson AF, Lindberg M, Jakobsson H, Backhed F, Nyren P, Engstrand L. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One. 2008;3:e2836.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Bik EM, Eckburg PB, Gill SR, et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci U S A. 2006;103:732–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heintz-Buschart A, Wilmes P. Human gut microbiome: function matters. Trends Microbiol. 2018;26:563–574.

    Article  CAS  PubMed  Google Scholar 

  21. Okereke I, Hamilton C, Wenholz A, et al. Associations of the microbiome and esophageal disease. J Thorac Dis. 2019;11:S1588–S1593.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Deshpande NP, Riordan SM, Castaño-Rodríguez N, Wilkins MR, Kaakoush NO. Signatures within the esophageal microbiome are associated with host genetics, age, and disease. Microbiome. 2018;6:227.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ferreira RDS, Mendonça L, Ribeiro CFA, et al. Relationship between intestinal microbiota, diet and biological systems: an integrated view. Crit Rev Food Sci Nutr. 2020:1–21.

  24. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107:14691–14696.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326:1694–1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou Y, Mihindukulasuriya KA, Gao H, et al. Exploration of bacterial community classes in major human habitats. Genome Biol. 2014;15:R66.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Okada H, Kuhn C, Feillet H, Bach JF. The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clin Exp Immunol. 2010;160:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ege MJ. The Hygiene hypothesis in the age of the microbiome. Ann Am Thorac Soc. 2017;14:S348–s353.

  30. Pirr S, Viemann D. Host factors of favorable intestinal microbial colonization. Front Immunol. 2020;11:584288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peters BA, Wu J, Pei Z, et al. Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer Res. 2017;77:6777–6787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gall A, Fero J, McCoy C, et al. Bacterial composition of the human upper gastrointestinal tract microbiome is dynamic and associated with genomic instability in a Barrett’s esophagus cohort. PloS one. 2015;10.

  33. Blackett KL, Siddhi SS, Cleary S, et al. Oesophageal bacterial biofilm changes in gastro-oesophageal reflux disease, Barrett’s and oesophageal carcinoma: association or causality? Alimen Pharmacol Therap. 2013;37:1084–1092.

    Article  CAS  Google Scholar 

  34. Yang L, Lu X, Nossa CW, Francois F, Peek RM, Pei Z. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology. 2009;137:588–597.

    Article  PubMed  Google Scholar 

  35. Snider EJ, Freedberg DE, Abrams JA. Potential role of the microbiome in Barrett’s esophagus and esophageal adenocarcinoma. Dig Dis Sci. 2016;61:2217–2225. https://doi.org/10.1007/s10620-016-4155-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Whiteman DC, Sadeghi S, Pandeya N, et al. Combined effects of obesity, acid reflux and smoking on the risk of adenocarcinomas of the oesophagus. Gut. 2008;57:173–180.

    Article  CAS  PubMed  Google Scholar 

  37. Hoyo C, Cook MB, Kamangar F, et al. Body mass index in relation to oesophageal and oesophagogastric junction adenocarcinomas: a pooled analysis from the International BEACON Consortium. Int J Epidemiol. 2012;41:1706–1718.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Turati F, Tramacere I, La Vecchia C, Negri E. A meta-analysis of body mass index and esophageal and gastric cardia adenocarcinoma. Ann Oncol. 2013;24:609–617.

    Article  CAS  PubMed  Google Scholar 

  39. Petrick JL, Kelly SP, Liao LM, Freedman ND, Graubard BI, Cook MB. Body weight trajectories and risk of oesophageal and gastric cardia adenocarcinomas: a pooled analysis of NIH-AARP and PLCO Studies. Br J Cancer. 2017;116:951–959.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Singh S, Sharma AN, Murad MH, et al. Central adiposity is associated with increased risk of esophageal inflammation, metaplasia, and adenocarcinoma: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2013;11:1399–1412.e1397.

    Article  PubMed  Google Scholar 

  41. Coleman HG, Xie SH, Lagergren J. The epidemiology of esophageal adenocarcinoma. Gastroenterology. 2018;154:390–405.

    Article  PubMed  Google Scholar 

  42. Neto AG, Whitaker A, Pei Z. Microbiome and potential targets for chemoprevention of esophageal adenocarcinoma. Semin Oncol. 2016;43:86–96.

    Article  PubMed  CAS  Google Scholar 

  43. Lagergren J. Influence of obesity on the risk of esophageal disorders. Nat Rev Gastroenterol Hepatol. 2011;8:340–347.

    Article  PubMed  Google Scholar 

  44. Alemán JO, Eusebi LH, Ricciardiello L, Patidar K, Sanyal AJ, Holt PR. Mechanisms of obesity-induced gastrointestinal neoplasia. Gastroenterology. 2014;146:357–373.

    Article  PubMed  Google Scholar 

  45. Gall A, Fero J, McCoy C, et al. Bacterial composition of the human upper gastrointestinal tract microbiome is dynamic and associated with genomic instability in a Barrett’s esophagus cohort. PLoS One. 2015;10:e0129055.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Martínez-González D, Franco J, Navarro-Ortega D, Muñoz C, Martí-Obiol R, Borrás-Salvador R. Achalasia and Mycobacterium goodii pulmonary infection. Pediatr Infect Dis J. 2011;30:447–448.

    Article  PubMed  Google Scholar 

  47. Wang AJ, Tu LX, Yu C, Zheng XL, Hong JB, Lu NH. Achalasia secondary to cardial tuberculosis caused by AIDS. J Dig Dis. 2015;16:752–753.

    Article  PubMed  Google Scholar 

  48. Benitez AJ, Hoffmann C, Muir AB, et al. Inflammation-associated microbiota in pediatric eosinophilic esophagitis. Microbiome. 2015;3:23.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dellon ES, Peery AF, Shaheen NJ, et al. Inverse association of esophageal eosinophilia with Helicobacter pylori based on analysis of a US pathology database. Gastroenterology. 2011;141:1586–1592.

    Article  PubMed  Google Scholar 

  50. Kashyap PC, Johnson S, Geno DM, et al. A decreased abundance of clostridia characterizes the gut microbiota in eosinophilic esophagitis. Physiol Rep. 2019;7:e14261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vesper BJ, Jawdi A, Altman KW, Haines GK 3rd, Tao L, Radosevich JA. The effect of proton pump inhibitors on the human microbiota. Curr Drug Metab. 2009;10:84–89.

    Article  CAS  PubMed  Google Scholar 

  52. Castellani C, Singer G, Kashofer K, et al. The influence of proton pump inhibitors on the fecal microbiome of infants with gastroesophageal reflux—a prospective longitudinal interventional study. Front Cell Infect Microbiol. 2017;7:444.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Martinsen TC, Bergh K, Waldum HL. Gastric juice: a barrier against infectious diseases. Basic Clin Pharmacol Toxicol. 2005;96:94–102.

    Article  CAS  PubMed  Google Scholar 

  54. Mishiro T, Oka K, Kuroki Y, et al. Oral microbiome alterations of healthy volunteers with proton pump inhibitor. J Gastroenterol Hepatol. 2018;33:1059–1066.

    Article  CAS  PubMed  Google Scholar 

  55. Amir I, Konikoff FM, Oppenheim M, Gophna U, Half EE. Gastric microbiota is altered in oesophagitis and Barrett’s oesophagus and further modified by proton pump inhibitors. Environ Microbiol. 2014;16:2905–2914.

    Article  CAS  PubMed  Google Scholar 

  56. Bruno G, Zaccari P, Rocco G, et al. Proton pump inhibitors and dysbiosis: current knowledge and aspects to be clarified. World journal of gastroenterology. 2019;25:2706–2719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yap YA, Mariño E. An insight into the intestinal web of mucosal immunity, microbiota, and diet in inflammation. Front Immunol. 2018;9:2617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Ghoshal UC, Shukla R, Ghoshal U, Gwee KA, Ng SC, Quigley EM. The gut microbiota and irritable bowel syndrome: friend or foe? Int J Inflam. 2012;2012:151085.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chumpitazi BP, Hollister EB, Oezguen N, et al. Gut microbiota influences low fermentable substrate diet efficacy in children with irritable bowel syndrome. Gut Microbes. 2014;5:165–175.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Münch NS, Fang HY, Ingermann J, et al. High-fat diet accelerates carcinogenesis in a mouse model of Barrett’s esophagus via interleukin 8 and alterations to the gut microbiome. Gastroenterology. 2019;157:492–506.e492.

    Article  PubMed  CAS  Google Scholar 

  61. Chen J, Pitmon E, Wang K. Microbiome, inflammation and colorectal cancer. Semin Immunol. 2017;32:43–53.

    Article  CAS  PubMed  Google Scholar 

  62. Jiang Q, Akashi S, Miyake K, Petty HR. Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J Immunol. 2000;165:3541–3544.

    Article  CAS  PubMed  Google Scholar 

  63. O’Riordan JM, Abdel-latif MM, Ravi N, et al. Proinflammatory cytokine and nuclear factor kappa-B expression along the inflammation–metaplasia–dysplasia–adenocarcinoma sequence in the esophagus. Am J Gastroenterol. 2005;100:1257–1264.

    Article  PubMed  CAS  Google Scholar 

  64. Calatayud S, García-Zaragozá E, Hernández C, et al. Downregulation of nNOS and synthesis of PGs associated with endotoxin-induced delay in gastric emptying. Am J Physiol Gastrointest Liver Physiol. 2002;283:G1360–G1367.

    Article  CAS  PubMed  Google Scholar 

  65. Fan YP, Chakder S, Gao F, Rattan S. Inducible and neuronal nitric oxide synthase involvement in lipopolysaccharide-induced sphincteric dysfunction. Am J Physiol Gastrointest Liver Physiol. 2001;280:G32–G42.

    Article  CAS  PubMed  Google Scholar 

  66. Koufman JA, Aviv JE, Casiano RR, Shaw GY. Laryngopharyngeal reflux: position statement of the committee on speech, voice, and swallowing disorders of the American Academy of Otolaryngology-Head and Neck Surgery. Otolaryngol-Head Neck Surg. 2002;127:32–35.

    Article  PubMed  Google Scholar 

  67. Wilson JA. What is the evidence that gastroesophageal reflux is involved in the etiology of laryngeal cancer? Curr Opin Otolaryngol Head Neck Surg. 2005;13:97–100.

    Article  PubMed  Google Scholar 

Download references

Funding

This review was supported by SDDRC (NIH DK120515).

Author information

Authors and Affiliations

Authors

Contributions

AH: Investigation, Drafting and revision of manuscript, Project Administration, Final approval; LH: Investigation, Drafting and revision of manuscript, Final approval; BS: Investigation, Revision of manuscript, Final approval; MG: Investigation, Revision of manuscript, Final approval; RY: Investigation, Revision of manuscript, Supervision, Final approval

Corresponding author

Correspondence to Rena Yadlapati.

Ethics declarations

Conflict of interest

BS has been consulting for Ferring Research Institute, HOST Therabiomics, Intercept Pharmaceuticals, Mabwell Therapeutics and Patara Pharmaceuticals. BS’s institution UC San Diego has received research support from Axial Biotherapeutics, BiomX, CymaBay Therapeutics, NGM Biopharmaceuticals, and Synlogic Operating Company. RY: Consultant: Medtronic, Ironwood Pharmaceuticals, Diversatek; Research support: Ironwood Pharmaceuticals; Advisory Board: Phathom Pharmaceuticals. AH, LH, MG: None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, A., Hasan, L.K., Schnabl, B. et al. Microbiome of the Aerodigestive Tract in Health and Esophageal Disease. Dig Dis Sci 66, 12–18 (2021). https://doi.org/10.1007/s10620-020-06720-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06720-6

Keywords

Navigation