Skip to main content

Advertisement

Log in

Vitamin D Deficiency Exacerbates Colonic Inflammation Due to Activation of the Local Renin–Angiotensin System in the Colon

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

The renin–angiotensin system (RAS) is activated in inflammatory bowel disease (IBD), and vitamin D deficiency aggravates the development of colitis, but the relationship between the local colonic RAS and vitamin D is unclear with regard to the pathogenesis of IBD.

Aims

To investigate whether vitamin D suppresses the local colonic RAS to prevent colonic mucosal inflammation in a mouse model of experimental colitis.

Methods

C57BL/6 mice fed vitamin D-deficient (VDD) diet for 8 weeks were induced to colitis by 2,4,6-trinitrobenzenesulfonic acid (TNBS), with mice fed vitamin D-sufficient (VDS) diet as controls. Colitis severity was assessed by histology, and pro-inflammatory cytokines, RAS components, and signaling pathways were quantified by real-time RT-PCR and Western blotting.

Results

C57BL/6 mice fed the VDD diet for 8 weeks exhibited significantly lower serum 25(OH)D3 concentrations compared to mice fed the VDS diet. When these VDD mice were induced to colitis by TNBS, they exhibited more severe colonic inflammation and developed more severe colitis compared to the VDS counterparts. VDD diet feeding resulted in higher production of mucosal pro-inflammatory cytokines, higher activation of the myosin light chain kinase-tight junction regulatory pathway, and greater increases in mucosal permeability. VDD diet feeding also enhanced colonic RAS activation. Treatment with angiotensin II receptor blocker losartan markedly alleviated colitis in TNBS-induced VDD mice.

Conclusion

Vitamin D deficiency promotes colonic inflammation at least in part due to over activation of the local RAS in the colon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347:417–429.

    Article  CAS  Google Scholar 

  2. Watson AJ, Chu S, Sieck L, et al. Epithelial barrier function in vivo is sustained despite gaps in epithelial layers. Gastroenterology. 2005;129:902–912.

    Article  Google Scholar 

  3. Fasano A, Shea-Donohue T. Mechanisms of disease: The role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat Clin Pract Gastroenterol Hepatol. 2005;2:416–422.

    Article  CAS  Google Scholar 

  4. Clayburgh DR, Barrett TA, Tang Y, et al. Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo. J Clin Invest. 2005;115:2702–2715.

    Article  CAS  Google Scholar 

  5. Shen L, Black ED, Witkowski ED, et al. Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J Cell Sci. 2006;119:2095–2106.

    Article  CAS  Google Scholar 

  6. Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 2001;7:683–694.

    Article  CAS  Google Scholar 

  7. Qiu W, Wu B, Wang X, et al. PUMA-mediated intestinal epithelial apoptosis contributes to ulcerative colitis in humans and mice. J Clin Invest. 2011;121:1722–1732.

    Article  CAS  Google Scholar 

  8. Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin–angiotensin systems. Physiol Rev. 2006;86:747–803.

    Article  CAS  Google Scholar 

  9. Fandriks L. The renin–angiotensin system and the gastrointestinal mucosa. Acta Physiol (Oxf). 2011;201:157–167. https://doi.org/10.1111/j.1748-1716.2010.02165.x.

    Article  CAS  Google Scholar 

  10. Geara AS, Azzi J, Jurewicz M, Abdi R. The renin–angiotensin system: An old, newly discovered player in immunoregulation. Transpl Rev (Orlando). 2009;23:151–158. https://doi.org/10.1016/j.trre.2009.04.002.

    Article  Google Scholar 

  11. Jaszewski R, Tolia V, Ehrinpreis MN, et al. Increased colonic mucosal angiotensin I and II concentrations in Crohn’s colitis. Gastroenterology. 1990;98:1543–1548.

    Article  CAS  Google Scholar 

  12. He L, Du J, Chen Y, et al. renin–angiotensin system promotes colonic inflammation by inducing TH17 activation via JAK2/STAT pathway. Am J Physiol Gastrointest Liver Physiol. 2019;316:G774–G784. https://doi.org/10.1152/ajpgi.00053.2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mizushima T, Sasaki M, Ando T, et al. Blockage of angiotensin II type 1 receptor regulates TNF-alpha-induced MAdCAM-1 expression via inhibition of NF-kappaB translocation to the nucleus and ameliorates colitis. Am J Physiol Gastrointest Liver Physiol. 2010;298:G255–G266. https://doi.org/10.1152/ajpgi.00264.2009.

    Article  CAS  PubMed  Google Scholar 

  14. Wengrower D, Zanninelli G, Pappo O, et al. Prevention of fibrosis in experimental colitis by captopril: The role of tgf-beta1. Inflamm Bowel Dis. 2004;10:536–545.

    Article  Google Scholar 

  15. Spencer AU, Yang H, Haxhija EQ, Wildhaber BE, Greenson JK, Teitelbaum DH. Reduced severity of a mouse colitis model with angiotensin converting enzyme inhibition. Dig Dis Sci. 2007;52:1060–1070. https://doi.org/10.1007/s10620-006-9124-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Inokuchi Y, Morohashi T, Kawana I, Nagashima Y, Kihara M, Umemura S. Amelioration of 2,4,6-trinitrobenzene sulphonic acid induced colitis in angiotensinogen gene knockout mice. Gut. 2005;54:349–356.

    Article  CAS  Google Scholar 

  17. Katada K, Yoshida N, Suzuki T, et al. Dextran sulfate sodium-induced acute colonic inflammation in angiotensin II type 1a receptor deficient mice. Inflamm Res. 2008;57:84–91. https://doi.org/10.1007/s00011-007-7098-y.

    Article  CAS  PubMed  Google Scholar 

  18. Shi Y, Liu T, He L, et al. Activation of the renin–angiotensin system promotes colitis development. Sci Rep. 2016;6:27552. https://doi.org/10.1038/srep27552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bouillon R, Carmeliet G, Verlinden L, et al. Vitamin D and human health: Lessons from vitamin D receptor null mice. Endocr Rev. 2008;29:726–776.

    Article  CAS  Google Scholar 

  20. Del Pinto R, Pietropaoli D, Chandar AK, Ferri C, Cominelli F. Association between inflammatory bowel disease and vitamin D deficiency: A systematic review and meta-analysis. Inflamm Bowel Dis. 2015;21:2708–2717. https://doi.org/10.1097/MIB.0000000000000546.

    Article  PubMed  Google Scholar 

  21. Ham M, Longhi MS, Lahiff C, Cheifetz A, Robson S, Moss AC. Vitamin D levels in adults with Crohn’s disease are responsive to disease activity and treatment. Inflamm Bowel Dis. 2014;20:856–860. https://doi.org/10.1097/MIB.0000000000000016.

    Article  PubMed  Google Scholar 

  22. Ulitsky A, Ananthakrishnan AN, Naik A, et al. Vitamin D deficiency in patients with inflammatory bowel disease: Association with disease activity and quality of life. JPEN. 2011;35:308–316.

    Article  CAS  Google Scholar 

  23. Meckel K, Li YC, Lim J, et al. Serum 25-hydroxyvitamin D concentration is inversely associated with mucosal inflammation in patients with ulcerative colitis. Am J Clin Nutr. 2016;104:113–120. https://doi.org/10.3945/ajcn.115.123786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ananthakrishnan AN, Khalili H, Higuchi LM, et al. Higher predicted vitamin D status is associated with reduced risk of Crohn’s disease. Gastroenterology. 2012;142:482–489. https://doi.org/10.1053/j.gastro.2011.11.040.

    Article  CAS  PubMed  Google Scholar 

  25. Du J, Chen Y, Shi Y, et al. 1,25-Dihydroxyvitamin D protects intestinal epithelial barrier by regulating the myosin light chain kinase signaling pathway. Inflamm Bowel Dis. 2015;21:2495–2506. https://doi.org/10.1097/MIB.0000000000000526.

    Article  PubMed  Google Scholar 

  26. Du J, Wei X, Ge X, Chen Y, Li YC. Microbiota-dependent induction of colonic Cyp27b1 is associated with colonic inflammation: Implications of locally produced 1,25-dihydroxyvitamin D3 in inflammatory regulation in the colon. Endocrinology. 2017;158:4064–4075. https://doi.org/10.1210/en.2017-00578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He L, Liu T, Shi Y, et al. Gut epithelial vitamin D receptor regulates microbiota-dependent mucosal inflammation by suppressing intestinal epithelial cell apoptosis. Endocrinology. 2018;159:967–979. https://doi.org/10.1210/en.2017-00748.

    Article  CAS  Google Scholar 

  28. Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin–angiotensin system. J Clin Invest. 2002;110:229–238.

    Article  CAS  Google Scholar 

  29. Li YC. Vitamin D regulation of the renin–angiotensin system. J Cell Biochem. 2003;88:327–331.

    Article  CAS  Google Scholar 

  30. Qiao G, Kong J, Uskokovic M, Li YC. Analogs of 1alpha,25-dihydroxyvitamin D3 as novel inhibitors of renin biosynthesis. J Steroid Biochem Mol Biol. 2005;96:59–66.

    Article  CAS  Google Scholar 

  31. Kong J, Qiao G, Zhang Z, Liu SQ, Li YC. Targeted vitamin D receptor expression in juxtaglomerular cells suppresses renin expression independent of parathyroid hormone and calcium. Kidney Int. 2008;74:1577–1581.

    Article  CAS  Google Scholar 

  32. Yuan W, Pan W, Kong J, et al. 1,25-Dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic amp response element in the renin gene promoter. J Biol Chem. 2007;282:29821–29830.

    Article  CAS  Google Scholar 

  33. Holick MF. Resurrection of vitamin D deficiency and rickets. J Clin Invest. 2006;116:2062–2072.

    Article  CAS  Google Scholar 

  34. Li YC, Qiao G, Uskokovic M, Xiang W, Zheng W, Kong J. Vitamin D: A negative endocrine regulator of the renin–angiotensin system and blood pressure. J Steroid Biochem Mol Biol. 2004;89–90:387–392.

    Article  Google Scholar 

  35. Dougherty U, Mustafi R, Sadiq F, et al. The renin–angiotensin system mediates EGF receptor-vitamin d receptor cross-talk in colitis-associated colon cancer. Clin Cancer Res. 2014;20:5848–5859. https://doi.org/10.1158/1078-0432.CCR-14-0209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu W, Chen Y, Golan MA, et al. Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis. J Clin Invest. 2013;123:3983–3996. https://doi.org/10.1172/JCI65842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wirtz S, Neufert C, Weigmann B, Neurath MF. Chemically induced mouse models of intestinal inflammation. Nat Protoc. 2007;2:541–546.

    Article  CAS  Google Scholar 

  38. Li YC, Bolt MJG, Cao L-P, Sitrin MD. Effects of vitamin D receptor inactivation on the expression of calbindins and calcium metabolism. Am J Physiol Endocrinol Metab. 2001;281:E558–E564.

    Article  CAS  Google Scholar 

  39. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101–1108.

    Article  CAS  Google Scholar 

  40. Lim WC, Hanauer SB, Li YC. Mechanisms of disease: Vitamin D and inflammatory bowel disease. Nat Clin Pract Gastroenterol Hepatol. 2005;2:308–315.

    Article  CAS  Google Scholar 

  41. Driscoll RH Jr, Meredith SC, Sitrin M, Rosenberg IH. Vitamin D deficiency and bone disease in patients with Crohn’s disease. Gastroenterology. 1982;83:1252–1258.

    Article  Google Scholar 

  42. Harries AD, Brown R, Heatley RV, Williams LA, Woodhead S, Rhodes J. Vitamin D status in Crohn’s disease: Association with nutrition and disease activity. Gut. 1985;26:1197–1203.

    Article  CAS  Google Scholar 

  43. Pappa HM, Gordon CM, Saslowsky TM, et al. Vitamin D status in children and young adults with inflammatory bowel disease. Pediatrics. 2006;118:1950–1961.

    Article  Google Scholar 

  44. Raftery T, Martineau AR, Greiller CL, et al. Effects of vitamin D supplementation on intestinal permeability, cathelicidin and disease markers in Crohn’s disease: Results from a randomised double-blind placebo-controlled study. United Eur Gastroenterol J. 2015;3:294–302. https://doi.org/10.1177/2050640615572176.

    Article  CAS  Google Scholar 

  45. Li J, Chen N, Wang D, Zhang J, Gong X. Efficacy of vitamin D in treatment of inflammatory bowel disease: A meta-analysis. Medicine (Baltimore). 2018;97:e12662. https://doi.org/10.1097/MD.0000000000012662.

    Article  CAS  Google Scholar 

  46. Salmenkari H, Holappa M, Forsgard RA, Korpela R, Vapaatalo H. Orally administered angiotensin-converting enzyme-inhibitors captopril and isoleucine–proline–proline have distinct effects on local renin–angiotensin system and corticosterone synthesis in dextran sulfate sodium-induced colitis in mice. J Physiol Pharmacol. 2017;68:355–362.

    CAS  PubMed  Google Scholar 

  47. Okawada M, Wilson MW, Larsen SD, Lipka E, Hillfinger J, Teitelbaum DH. Blockade of the renin–angiotensin system prevents acute and immunologically relevant colitis in murine models. Pediatr Surg Int. 2016;32:1103–1114. https://doi.org/10.1007/s00383-016-3965-3.

    Article  PubMed  Google Scholar 

  48. Jacobs JD, Wagner T, Gulotta G, et al. Impact of angiotensin II signaling blockade on clinical outcomes in patients with inflammatory bowel disease. Dig Dis Sci. 2019. https://doi.org/10.1007/s10620-019-5474-4.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhang Z, Zhang Y, Ning G, Deb DK, Kong J, Li YC. Combination therapy with AT1 blocker and vitamin D analog markedly ameliorates diabetic nephropathy: Blockade of compensatory renin increase. Proc Natl Acad Sci USA. 2008;105:15896–15901.

    Article  CAS  Google Scholar 

  50. Deb DK, Sun T, Wong KE, et al. Combined vitamin D analog and AT1 receptor antagonist synergistically block the development of kidney disease in a model of type 2 diabetes. Kidney Int. 2010;77:1000–1009.

    Article  CAS  Google Scholar 

  51. de Borst MH, Hajhosseiny R, Tamez H, Wenger J, Thadhani R, Goldsmith DJ. Active vitamin D treatment for reduction of residual proteinuria: A systematic review. J Am Soc Nephrol. 2013;24:1863–1871. https://doi.org/10.1681/ASN.2013030203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. de Zeeuw D, Agarwal R, Amdahl M, et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): A randomised controlled trial. Lancet. 2010;376:1543–1551.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a research Grant from Liaoning Province.

Author information

Authors and Affiliations

Authors

Contributions

YCL conceived and designed the research; XW, XL, XG, and YS performed the research; JD, XL, ZX, WL, and Z-YW provided technical assistance; XW and YCL performed the data analyses; XW and YCL wrote the manuscript; and Z-YW and YCL supervised the study.

Corresponding author

Correspondence to Zhan-You Wang.

Ethics declarations

Conflict of interest

All authors have declared that no conflict of interest exists in this work.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Li, X., Du, J. et al. Vitamin D Deficiency Exacerbates Colonic Inflammation Due to Activation of the Local Renin–Angiotensin System in the Colon. Dig Dis Sci 66, 3813–3821 (2021). https://doi.org/10.1007/s10620-020-06713-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06713-5

Keywords

Navigation