Skip to main content

Advertisement

Log in

Circular RNA Paired-Related Homeobox 1 Promotes Gastric Carcinoma Cell Progression via Regulating MicroRNA-665/YWHAZ Axis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Gastric carcinoma (GC) is a ubiquitous malignant tumor worldwide. Circular RNA paired-related homeobox 1 (circ-PRRX1), one kind of non-coding RNAs, has been reported to act as a promoter in tumor growth. This study aims to explore the effects of circ-PRRX1 on proliferation, apoptosis, and metastasis in GC and the underlying regulatory mechanisms.

Methods

The expression of circ-PRRX1, miR-665, and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) mRNA was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Western blot was used to analyze YWHAZ protein expression. 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-Htetrazolium bromide (MTT), flow cytometry, and transwell assay were carried out to assess the viability, apoptosis, migration, and invasion in GC cells. The interaction between miR-665 and circ-PRRX1 or YWHAZ was predicted by StarBase v2.0 and identified by dual-luciferase reporter system. Xenograft mouse model was employed to determine the effects of circ-PRRX1 knockdown on GC growth in vivo.

Results

Compared with normal tissues and cells, circ-PRRX1 and YWHAZ levels were upregulated, and miR-665 was downregulated in GC tissues and cells. Functionally, circ-PRRX1 knockdown inhibited the viability, migration, and invasion and promoted apoptosis in GC cells, whereas anti-miR-665 abolished these effects. Mechanistically, circ-PRRX1 was confirmed as a sponge of miR-665 to regulate YWHAZ expression. Xenograft mouse model suggested that circ-PRRX1 knockdown reduced GC cells growth in vivo.

Conclusion

Circ-PRRX1 knockdown suppressed GC development by targeting miR-665 to inhibit YWHAZ expression, and the potential molecular mechanism may provide a theoretical basis for GC therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen W, Sun K, Zheng R, et al. Cancer incidence and mortality in China, 2014. Chin J Cancer Res. 2018;30:1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  2. China National Health Commission of The People’s Republic of China. Chinese guidelines for diagnosis and treatment of gastric cancer 2018 (English version). Chin J Cancer Res. 2019;31:707–737.

    Article  CAS  Google Scholar 

  3. Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomarkers Prev. 2014;23:700–713.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tan Z. Recent advances in the surgical treatment of advanced gastric cancer: a review. Med Sci Monit. 2019;25:3537–3541.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kappas AM, Fatouros M, Roukos DH. Is it time to change surgical strategy for gastric cancer in the United States? Ann Surg Oncol. 2004;11:727–730.

    Article  PubMed  Google Scholar 

  6. Lasda E, Parker R. Circular RNAs: diversity of form and function. RNA. 2014;20:1829–1842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kulcheski FR, Christoff AP, Margis R. Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol. 2016;238:42–51.

    Article  CAS  PubMed  Google Scholar 

  8. Zhong Y, Du Y, Yang X, et al. Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer. 2018;17:79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Sun H, Tang W, Rong D, et al. Hsa_circ_0000520, a potential new circular RNA biomarker, is involved in gastric carcinoma. Cancer Biomark. 2018;21:299–306.

    Article  CAS  PubMed  Google Scholar 

  10. Yang F, Liu DY, Guo JT, et al. Circular RNA circ-LDLRAD3 as a biomarker in diagnosis of pancreatic cancer. World J Gastroenterol. 2017;23:8345–8354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang R, Zhang Y, Han B, et al. Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124-2HG. Autophagy. 2017;13:1722–1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang Z, Lin W, Gao L, Chen K, Yang C, Zhuang L, Peng S, Kang M, Lin J. Hsa_circ_0004370 promotes esophageal cancer progression through miR-1294/LASP1 pathway. Biosci Rep. 2019;39:BSR20182377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Han D, Li J, Wang H, et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology. 2017;66:1151–1164.

    Article  CAS  PubMed  Google Scholar 

  14. Su H, Lin F, Deng X, et al. Profiling and bioinformatics analyses reveal differential circular RNA expression in radioresistant esophageal cancer cells. J Transl Med. 2016;14:225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hua Y, Shiwei D, Murmann AE, et al. miRConnect: identifying effector genes of miRNAs and miRNA families in cancer cells. PloS One. 2011;6:e26521–e26521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Giovannetti E, Erozenci A, Smit J, Danesi R, Peters GJ. Molecular mechanisms underlying the role of microRNAs (miRNAs) in anticancer drug resistance and implications for clinical practice. Crit Rev Oncol Hematol. 2012;81:103–122.

    Article  PubMed  Google Scholar 

  17. Zhao XG, Hu JY, Tang J, et al. miR-665 expression predicts poor survival and promotes tumor metastasis by targeting NR4A3 in breast cancer. Cell Death Dis. 2019;10:479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hu Y, Yang C, Yang S, Cheng F, Rao J, Wang X. miR-665 promotes hepatocellular carcinoma cell migration, invasion, and proliferation by decreasing Hippo signaling through targeting PTPRB. Cell Death Dis. 2018;9:954.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hu J, Ni G, Mao L, et al. LINC00565 promotes proliferation and inhibits apoptosis of gastric cancer by targeting miR-665/AKT3 axis. OncoTargets Ther. 2019;12:7865–7875.

    Article  CAS  Google Scholar 

  20. Zhang M, Wang S, Yi A, Qiao Y. microRNA-665 is down-regulated in gastric cancer and inhibits proliferation, invasion, and EMT by targeting PPP2R2A. Cell Biochem Funct. 2020;38:409–418.

    Article  CAS  PubMed  Google Scholar 

  21. Matta A, Siu KW, Ralhan R. 14-3-3 zeta as novel molecular target for cancer therapy. Expert Opin Ther Targets. 2012;16:515–523.

    Article  CAS  PubMed  Google Scholar 

  22. Shi J, Ye J, Fei H, et al. YWHAZ promotes ovarian cancer metastasis by modulating glycolysis. Oncol Rep. 2019;41:1101–1112.

    CAS  PubMed  Google Scholar 

  23. Gan Y, Ye F, He X-X. The role of YWHAZ in cancer: a maze of opportunities and challenges. J Cancer. 2020;11:2252–2264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–132.

    Article  PubMed  Google Scholar 

  25. Wang FH, Shen L, Li J, et al. The Chinese Society of Clinical Oncology (CSCO): clinical guidelines for the diagnosis and treatment of gastric cancer. Cancer Commun (Lond). 2019;39:10.

    Article  Google Scholar 

  26. Zhao TT, Xu H, Xu HM, et al. The efficacy and safety of targeted therapy with or without chemotherapy in advanced gastric cancer treatment: a network meta-analysis of well-designed randomized controlled trials. Gastric Cancer. 2018;21:361–371.

    Article  CAS  PubMed  Google Scholar 

  27. Huang X, Li Z, Zhang Q, et al. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol Cancer. 2019;18:71.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu J, Song S, Lin S, et al. Circ-SERPINE2 promotes the development of gastric carcinoma by sponging miR-375 and modulating YWHAZ. Cell Prolif. 2019;52:e12648.

    PubMed  PubMed Central  Google Scholar 

  29. Zhang J, Liu H, Hou L, et al. Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression. Mol Cancer. 2017;16:151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Marchand B, Pitarresi JR, Reichert M, Suzuki K, Laczko D, Rustgi AK. PRRX1 isoforms cooperate with FOXM1 to regulate the DNA damage response in pancreatic cancer cells. Oncogene. 2019;38:4325–4339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–890.

    Article  CAS  PubMed  Google Scholar 

  32. Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 2016;7:11215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Holdt LM, Stahringer A, Sass K, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun. 2016;7:12429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Y, Mo Y, Gong Z, et al. Circular RNAs in human cancer. Mol Cancer. 2017;16:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dong Y, Xu T, Zhong S, et al. Circ_0076305 regulates cisplatin resistance of non-small cell lung cancer via positively modulating STAT3 by sponging miR-296-5p. Life Sci. 2019;239:116984.

    Article  CAS  PubMed  Google Scholar 

  36. Wu Z, Gong Q, Yu Y, Zhu J, Li W. Knockdown of circ-ABCB10 promotes sensitivity of lung cancer cells to cisplatin via miR-556-3p/AK4 axis. BMC Pulm Med. 2020;20:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ouyang S, Zhou X, Chen Z, Wang M, Zheng X, Xie M. LncRNA BCAR4, targeting to miR-665/STAT3 signaling, maintains cancer stem cells stemness and promotes tumorigenicity in colorectal cancer. Cancer Cell Int. 2019;19:72.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Deng Y, Zheng J, Ma J. The clinical and prognostic significance of YWHAZ in non-small-cell lung cancer patients: immunohistochemical analysis. J Cell Biochem. 2019;120:6290–6298.

    Article  CAS  PubMed  Google Scholar 

  39. Wang W, Zhang L, Wang Y, et al. Involvement of miR-451 in resistance to paclitaxel by regulating YWHAZ in breast cancer. Cell Death Dis. 2017;8:e3071.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li Y, Wang J, Dai X, et al. miR-451 regulates FoxO3 nuclear accumulation through Ywhaz in human colorectal cancer. Am J Transl Res. 2015;7:2775–2785.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nishimura Y, Komatsu S, Ichikawa D, et al. Overexpression of YWHAZ relates to tumor cell proliferation and malignant outcome of gastric carcinoma. Br J Cancer. 2013;108:1324–1331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao JF, Zhao Q, Hu H, et al. The ASH1-miR-375-YWHAZ signaling axis regulates tumor properties in hepatocellular carcinoma. Mol Ther Nucleic Acids. 2018;11:538–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no financial conflicts of interest.

Ethics approval and consent to participate

This study was approved by the Ethics Committee of Shidong Hospital, and written informed consents were signed by participants prior to enrolling in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Hu, W., Hou, K. et al. Circular RNA Paired-Related Homeobox 1 Promotes Gastric Carcinoma Cell Progression via Regulating MicroRNA-665/YWHAZ Axis. Dig Dis Sci 66, 3842–3853 (2021). https://doi.org/10.1007/s10620-020-06705-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06705-5

Keywords

Navigation