Skip to main content
Log in

Bad “Good” Bile Acids and Gut Microbiota Dysbiosis in Inflammatory Bowel Disease: Mice and Humans Are Not the Same

  • Correspondence
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

The effects of deoxycholic acid (DCA) on the intestinal microbiota, bile acid (BA) metabolism, and intestinal epithelium can be influenced by various factors. Depending on the specific conditions, DCA can be “bad” (proinflammatory) or “good” (anti-inflammatory). Mouse models of colitis show an increase in conjugated BAs and gut dysbiosis, including DCA-related dysbiosis, with a significant decrease in bile salt hydrolase (bsh) gene-containing taxa. Human patients with inflammatory bowel disease demonstrate, primarily, a decrease in bile acid-inducible (bai) gene-containing taxa and a deficiency in secondary BAs, suggesting their anti-inflammatory role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Xu M, Cen M, Shen Y, et al. Deoxycholic acid-induced gut dysbiosis disrupts bile acid enterohepatic circulation and promotes intestinal inflammation. Dig Dis Sci. 2020. https://doi.org/10.1007/s10620-020-06208-3.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bernstein H, Holubec H, Bernstein C, et al. Unique dietary-related mouse model of colitis. Inflamm Bowel Dis. 2006;12:278–293. https://doi.org/10.1097/01.MIB.0000209789.14114.63.

    Article  PubMed  Google Scholar 

  3. Zhao S, Gong Z, Du X, et al. Deoxycholic acid-mediated sphingosine-1-phosphate receptor 2 signaling exacerbates DSS-induced colitis through promoting cathepsin B release. J Immunol Res. 2018;2018:2481418. https://doi.org/10.1155/2018/2481418.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Ke J, Li Y, Han C, et al. Fucose ameliorate intestinal inflammation through modulating the crosstalk between bile acids and gut microbiota in a chronic colitis murine model. Inflamm Bowel Dis. 2020;26:863–873. https://doi.org/10.1093/ibd/izaa007.

    Article  PubMed  Google Scholar 

  5. Sitkin S, Vakhitov T, Kononova S, et al. Gut microbiota-mediated pleiotropic effects of fucose can improve inflammatory bowel disease by modulating bile acid metabolism and enhancing propionate production. Inflamm Bowel Dis. 2020. https://doi.org/10.1093/ibd/izaa233.

    Article  Google Scholar 

  6. Guo C, Xie S, Chi Z, et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity. 2016;45:802–816. https://doi.org/10.1016/j.immuni.2016.09.008.

    Article  PubMed  CAS  Google Scholar 

  7. Sinha SR, Haileselassie Y, Nguyen LP, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Microbe. 2020;27:e5. https://doi.org/10.1016/j.chom.2020.01.021.

    Article  CAS  Google Scholar 

  8. Lloyd-Price J, Arze C, Ananthakrishnan AN, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569:655–662. https://doi.org/10.1038/s41586-019-1237-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Das P, Marcišauskas S, Ji B, Nielsen J. Metagenomic analysis of bile salt biotransformation in the human gut microbiome. BMC Genom. 2019;20:517. https://doi.org/10.1186/s12864-019-5899-3.

    Article  CAS  Google Scholar 

  10. Duboc H, Rajca S, Rainteau D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut. 2013;62:531–539. https://doi.org/10.1136/gutjnl-2012-302578.

    Article  PubMed  CAS  Google Scholar 

  11. Quinn RA, Melnik AV, Vrbanac A, et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature. 2020;579:123–129. https://doi.org/10.1038/s41586-020-2047-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Song X, Sun X, Oh SF, et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature. 2020;577:410–415. https://doi.org/10.1038/s41586-019-1865-0.

    Article  PubMed  CAS  Google Scholar 

  13. Ward JBJ, Lajczak NK, Kelly OB, et al. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol. 2017;312:G550–G558. https://doi.org/10.1152/ajpgi.00256.2016.

    Article  PubMed  Google Scholar 

  14. Lajczak-McGinley NK, Porru E, Fallon CM, et al. The secondary bile acids, ursodeoxycholic acid and lithocholic acid, protect against intestinal inflammation by inhibition of epithelial apoptosis. Physiol Rep. 2020;8:e14456. https://doi.org/10.14814/phy2.14456.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors drafted and critically revised the manuscript and approved the final version.

Corresponding author

Correspondence to Stanislav Sitkin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitkin, S., Pokrotnieks, J. Bad “Good” Bile Acids and Gut Microbiota Dysbiosis in Inflammatory Bowel Disease: Mice and Humans Are Not the Same. Dig Dis Sci 66, 925–927 (2021). https://doi.org/10.1007/s10620-020-06650-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06650-3

Keywords

Navigation