Skip to main content

Advertisement

Log in

Artificial Intelligence and Its Role in Identifying Esophageal Neoplasia

  • MENTORED REVIEW
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Randomized trials have demonstrated that ablation of dysplastic Barrett’s esophagus can reduce the risk of progression to cancer. Endoscopic resection for early stage esophageal adenocarcinoma and squamous cell carcinoma can significantly reduce postoperative morbidity compared to esophagectomy. Unfortunately, current endoscopic surveillance technologies (e.g., high-definition white light, electronic, and dye-based chromoendoscopy) lack sensitivity at identifying subtle areas of dysplasia and cancer. Random biopsies sample only approximately 5% of the esophageal mucosa at risk, and there is poor agreement among pathologists in identifying low-grade dysplasia. Machine-based deep learning medical image and video assessment technologies have progressed significantly in recent years, enabled in large part by advances in computer processing capabilities. In deep learning, sequential layers allow models to transform input data (e.g., pixels for imaging data) into a composite representation that allows for classification and feature identification. Several publications have attempted to use this technology to help identify dysplasia and early esophageal cancer. The aims of this reviews are as follows: (a) discussing limitations in our current strategies to identify esophageal dysplasia and cancer, (b) explaining the concepts behind deep learning and convolutional neural networks using language appropriate for clinicians without an engineering background, (c) systematically reviewing the literature for studies that have used deep learning to identify esophageal neoplasia, and (d) based on the systemic review, outlining strategies on further work necessary before these technologies are ready for “prime-time,” i.e., use in routine clinical care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arnold M, Soerjomataram I, Ferlay J, Forman D. Global incidence of oesophageal cancer by histological subtype in 2012. Gut. 2015;64:381–387.

    Article  PubMed  Google Scholar 

  2. Cotton CC, Wolf WA, Overholt BF, et al. Late recurrence of Barrett’s esophagus after complete eradication of intestinal metaplasia is rare: final report from ablation in intestinal metaplasia containing dysplasia trial. Gastroenterology. 2017;153:681–688.

    Article  PubMed  Google Scholar 

  3. Phoa KN, Rosmolen WD, Weusten B, et al. The cost-effectiveness of radiofrequency ablation for Barrett’s esophagus with low-grade dysplasia: results from a randomized controlled trial (SURF trial). Gastrointest Endosc. 2017;86:120–129.

    Article  PubMed  Google Scholar 

  4. Naveed M, Kubiliun N. Endoscopic treatment of early-stage esophageal cancer. Curr Oncol Rep. 2018;20:71.

    Article  PubMed  CAS  Google Scholar 

  5. Shaheen NJ, Falk GW, Iyer PG, Gerson LB, American College of G. ACG clinical guideline: diagnosis and management of Barrett’s esophagus. Am J Gastroenterol. 2016;111:30–50. (quiz 1).

    Article  CAS  PubMed  Google Scholar 

  6. Domper Arnal MJ, Ferrandez Arenas A, Lanas Arbeloa A. Esophageal cancer: Risk factors, screening and endoscopic treatment in Western and Eastern countries. World J Gastroenterol. 2015;21:7933–7943.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sharma N, Ho KY. Recent updates in the endoscopic diagnosis of Barrett’s oesophagus. Gastrointest Tumors. 2016;3:109–113.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wani S, Williams JL, Komanduri S, Muthusamy VR, Shaheen NJ. Endoscopists systematically undersample patients with long-segment Barrett’s esophagus: an analysis of biopsy sampling practices from a quality improvement registry. Gastrointest Endosc. 2019;90:732–741.

    Article  PubMed  Google Scholar 

  9. Davila RE. Chromoendoscopy. Gastrointest Endosc Clin N Am. 2009;19:193–208.

    Article  PubMed  Google Scholar 

  10. Goldblum JR, Shaheen NJ, Vennalaganti PR, Sharma P, Lightdale CJ. WATS for Barrett’s surveillance. Gastrointest Endosc. 2018;88:201–202.

    Article  PubMed  Google Scholar 

  11. Committee AT, Thosani N, Abu Dayyeh BK, et al. ASGE Technology Committee systematic review and meta-analysis assessing the ASGE preservation and incorporation of valuable endoscopic innovations thresholds for adopting real-time imaging-assisted endoscopic targeted biopsy during endoscopic surveillance of Barrett’s esophagus. Gastrointest Endosc. 2016;83:684–698.

    Article  Google Scholar 

  12. Ferguson DD, DeVault KR, Krishna M, Loeb DS, Wolfsen HC, Wallace MB. Enhanced magnification-directed biopsies do not increase the detection of intestinal metaplasia in patients with GERD. Am J Gastroenterol. 2006;101:1611–1616.

    Article  PubMed  Google Scholar 

  13. Sanghi V, Thota PN. Barrett’s esophagus: novel strategies for screening and surveillance. Ther Adv Chronic Dis. 2019;10:2040622319837851.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Patel V, Khan MN, Shrivastava A, et al. Artificial intelligence applied to gastrointestinal diagnostics: a review. J Pediatr Gastroenterol Nutr. 2020;70:4–11.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962;160:106–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. Eur Conf Comput Vis. 2014;8689:818–833.

    Google Scholar 

  17. Goldblum JR. Controversies in the diagnosis of Barrett esophagus and Barrett-related dysplasia: one pathologist’s perspective. Arch Pathol Lab Med. 2010;134:1479–1484.

    Article  PubMed  Google Scholar 

  18. Deo RC. Machine learning in medicine. Circulation. 2015;132:1920–1930.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wani S, Rubenstein JH, Vieth M, Bergman J. Diagnosis and management of low-grade dysplasia in Barrett’s esophagus: expert review from the clinical practice updates committee of the american gastroenterological association. Gastroenterology. 2016;151:822–835.

    Article  PubMed  Google Scholar 

  20. Shah T, Lippman R, Kohli D, Mutha P, Solomon S, Zfass A. Accuracy of probe-based confocal laser endomicroscopy (pCLE) compared to random biopsies during endoscopic surveillance of Barrett’s esophagus. Endosc Int Open. 2018;6:E414–E420.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vennalaganti P, Kanakadandi V, Goldblum JR, et al. Discordance among pathologists in the United States and Europe in diagnosis of low-grade dysplasia for patients with Barrett’s Esophagus. Gastroenterology. 2017;152:564–570.

    Article  PubMed  Google Scholar 

  22. Litjens G, Bandi P, Ehteshami Bejnordi B, et al. 1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset. Gigascience. 2018;7:giy065.

    Article  PubMed Central  Google Scholar 

  23. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–269.

    Article  PubMed  Google Scholar 

  24. de Groof AJ, Struyvenberg MR, Fockens KN, et al. Deep learning algorithm detection of Barrett’s neoplasia with high accuracy during live endoscopic procedures: a pilot study (with video). Gastrointest Endosc. 2020;91:1242–1250.

    Article  PubMed  Google Scholar 

  25. de Groof AJ, Struyvenberg MR, van der Putten J, et al. Deep-learning system detects neoplasia in patients with Barrett’s esophagus with higher accuracy than endoscopists in a multistep training and validation study with benchmarking. Gastroenterology. 2020;158:915–929.

    Article  PubMed  Google Scholar 

  26. de Groof J, van der Sommen F, van der Putten J, et al. The Argos project: the development of a computer-aided detection system to improve detection of Barrett’s neoplasia on white light endoscopy. United Eur Gastroenterol J. 2019;7:538–547.

    Article  Google Scholar 

  27. Sali R, Moradinasab N, Guleria S, Ehsan L, Fernandes P, Shah T, Syed S, Brown DE. Deep learning for whole slide tissue histopathology classification: a comparative study in identification of dysplastic and non-dysplastic Barrett’s esophagus. J Pers Med. Accepted manuscript.

  28. Zhang CML, Uedo N, Matsuura N, Tam P, Teoh AY. The use of convolutional neural artificial intelligence network to aid the diagnosis and classification of early esophageal neoplasia. A feasibility study. Gastrointestinal Endosc. 2017;85:AB581–AB582.

    Article  Google Scholar 

  29. Mendel R, Ebigbo A, Probst A, Messmann H, Palm C. Barrett’s Esophagus analysis using convolutional neural networks. Bildverarbeitung für die Medizin. 2017:80-5.

  30. Ebigbo A, Mendel R, Probst A, et al. Computer-aided diagnosis using deep learning in the evaluation of early oesophageal adenocarcinoma. Gut. 2019;68:1143–1145.

    Article  PubMed  Google Scholar 

  31. Everson M, Herrera L, Li W, et al. Artificial intelligence for the real-time classification of intrapapillary capillary loop patterns in the endoscopic diagnosis of early oesophageal squamous cell carcinoma: a proof-of-concept study. United Eur Gastroenterol J. 2019;7:297–306.

    Article  CAS  Google Scholar 

  32. Guo L, Wu C, Xiao X, et al. Automated detection of precancerous lesion and early esophageal squamous cancer using a deep learning model. Am J Gastroenterol. 2018;113:S173–S174.

    Article  Google Scholar 

  33. Horie Y, Yoshio T, Aoyama K, Fujisaki J, Tada T. Application of artificial intelligence using convolutional neural networks in the detection of esophageal cancer. Gastrointestinal Endosc. 2018;87:AB538.

    Article  Google Scholar 

  34. Cai SL, Li B, Tan WM, et al. Using a deep learning system in endoscopy for screening of early esophageal squamous cell carcinoma (with video). Gastrointest Endosc. 2019;90:745–753.

    Article  PubMed  Google Scholar 

  35. Ghatwary N, Zolgharni M, Ye X. Early esophageal adenocarcinoma detection using deep learning methods. Int J Comput Assist Radiol Surg. 2019;14:611–621.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Horie Y, Yoshio T, Aoyama K, et al. Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointest Endosc. 2019;89:25–32.

    Article  PubMed  Google Scholar 

  37. Liu DY, Jiang H, Rao N, Luo C, Du W, Li Z, et al. Computer aided annotation of early esophageal cancer in gastroscopic images based on Deeplabv3+ network. ICBIP ‘19: Proceedings of the 2019 4th International Conference on Biomedical Signal and Image Processing (ICBIP 2019). 2019: pp 56–61.

  38. Shiroma S, Yoshio T, Aoyama K, Tsuchida T, Fujisaki J, Tada T. The application of artificial intelligence to detect esophageal squamous cell carcinoma in movies using convoluntional neural networks. Gastrointest Endosc. 2019;89:AB89.

    Article  Google Scholar 

  39. Struyvenberg MRDG, Van Der Putten J, Van Der Sommen F, et al. Deep learning algorithm for characterization of barrett’s neoplasia demonstrates high accuracy on NBI-zoom images. Gastroenterology. 2019;156:S-58.

    Article  Google Scholar 

  40. Tang DW, Wang L, He G, et al. Artificial intelligence network to aid the diagnosis of early esophageal squamous cell carcinoma and esophageal inflammations in white light endoscopic images. Gastrointestinal Endosc. 2019;89:AB654.

    Article  Google Scholar 

  41. Ebigbo A, Mendel R, Probst A, et al. Real-time use of artificial intelligence in the evaluation of cancer in Barrett’s oesophagus. Gut. 2020;69:615–616.

    Article  PubMed  Google Scholar 

  42. Guo L, Xiao X, Wu C, et al. Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos). Gastrointest Endosc. 2020;91:41–51.

    Article  PubMed  Google Scholar 

  43. Ohmori M, Ishihara R, Aoyama K, et al. Endoscopic detection and differentiation of esophageal lesions using a deep neural network. Gastrointest Endosc. 2020;91:301–309.

    Article  PubMed  Google Scholar 

  44. Hashimoto R, Requa J, Dao T, et al. Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett’s esophagus (with video). Gastrointest Endosc. 2020;91:1264–1271.

    Article  PubMed  Google Scholar 

  45. Iwagami H, Ishihara R, Aoyama K, Fukuda H, Shimamoto Y, Kono M, et al. Artificial intelligence for the detection of esophageal and esophagogastric junctional adenocarcinoma. J Gastroenterol Hepatol. 2020.

Download references

Acknowledgments

John Cyrus (Research and Education Librarian): Assisted in literature search of following databases: Pubmed/Medline, Embase, Cochrane library and Web of Science for studies. Tilak Shah: ASGE, McGuire Research Institute. Research contract with Allergan. Sana Syed: K23DK117061-01A1 (SS) National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) of the National Institutes of Health.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taseen Syed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syed, T., Doshi, A., Guleria, S. et al. Artificial Intelligence and Its Role in Identifying Esophageal Neoplasia. Dig Dis Sci 65, 3448–3455 (2020). https://doi.org/10.1007/s10620-020-06643-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06643-2

Keywords

Navigation