Skip to main content

Advertisement

Log in

Does Hepatocellular Carcinoma Surveillance Increase Survival in At-Risk Populations? Patient Selection, Biomarkers, and Barriers

  • INVITED REVIEW
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is a highly morbid and prevalent cancer globally. While high quality evidence for mortality benefit of HCC surveillance is lacking, early detection of HCC is likely beneficial as prognosis is highly correlated with tumor stage. High risk populations, including patients with cirrhosis and subgroups with Hepatitis B, should undergo surveillance with ultrasound ± alpha-fetoprotein (AFP) at 6-month intervals. In addition, emerging data suggest that patients with Hepatitis C cirrhosis who achieve sustained virologic response should continue surveillance. Further research is needed to determine the value of surveillance in patients with nonalcoholic fatty liver disease in the absence of cirrhosis or with advanced fibrosis of other etiologies. Newer biomarkers and models such as Lens culinaris agglutinin-reactive fraction of AFP, des-γ-carboxy prothrombin, and the GALAD score are increasingly utilized in the diagnosis and prognostication of HCC. The role of these biomarkers in surveillance is still under investigation but may potentially offer a more practical alternative to traditional image-based surveillance. Despite recommendations from multiple professional society guidelines, many at-risk patients do not receive HCC surveillance due to barriers at the patient, clinician, and health care system levels. Strategies such as implementing patient navigation services, educating clinicians about surveillance guidelines, and creating automated outreach systems, may improve surveillance rates and ultimately reduce morbidity and mortality from HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AFP:

Alpha-fetoprotein

DAA:

Direct-acting antiviral

DCP:

Des-γ-carboxy prothrombin

HCV:

Hepatitis C virus

HCC:

Hepatocellular carcinoma

AFP-L3:

Lens culinaris agglutinin-reactive fraction of AFP

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

OR:

Odds ratio

RCT:

Randomized control trial

SVR:

Sustained virologic response

References

  1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    PubMed  Google Scholar 

  2. White DL, Thrift AP, Kanwal F, et al. Incidence of hepatocellular carcinoma in all 50 United States, from 2000 through 2012. Gastroenterology. 2017;152:812–820.

    PubMed  Google Scholar 

  3. Llovet JM, Brú C, Bruix J. Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis. 1999;19:329–338.

    CAS  PubMed  Google Scholar 

  4. Altekruse SF, McGlynn KA, Reichman ME. Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J Clin Oncol. 2009;27:1485–1491.

    PubMed  PubMed Central  Google Scholar 

  5. Robinson A, Tavakoli H, Liu B, et al. Advanced hepatocellular carcinoma tumor stage at diagnosis in the 1945–1965 birth cohort reflects poor use of hepatocellular carcinoma screening. Hepatol Commun. 2018;2:1147–1155.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Davila JA, Morgan RO, Richardson PA, et al. Use of surveillance for hepatocellular carcinoma among patients with cirrhosis in the United States. Hepatology. 2010;52:132–141.

    PubMed  Google Scholar 

  7. Zhang BH, Yang BH, Tang ZY. Randomized controlled trial of screening for hepatocellular carcinoma. J Cancer Res Clin Oncol. 2004;130:417–422.

    PubMed  Google Scholar 

  8. Chen JG, Parkin DM, Chen QG, et al. Screening for liver cancer: results of a randomised controlled trial in Qidong, China. J Med Screen. 2003;10:204–209.

    PubMed  Google Scholar 

  9. Moon AM, Weiss NS, Beste LA, et al. No association between screening for hepatocellular carcinoma and reduced cancer-related mortality in patients with cirrhosis. Gastroenterology. 2018;155:1128–1139.

    PubMed  Google Scholar 

  10. Singal AG, Pillai A, Tiro J. Early detection, curative treatment, and survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis: a meta-analysis. PLoS Med. 2014;11:e1001624.

    PubMed  PubMed Central  Google Scholar 

  11. Poustchi H, Farrell GC, Strasser SI, et al. Feasibility of conducting a randomized control trial for liver cancer screening: is a randomized controlled trial for liver cancer screening feasible or still needed? Hepatology. 2011;54:1998–2004.

    PubMed  Google Scholar 

  12. Serper M, Taddei TH, Mehta R, et al. Association of provider specialty and multidisciplinary care with hepatocellular carcinoma treatment and mortality. Gastroenterology. 2017;152:1954–1964.

    PubMed  Google Scholar 

  13. Cotton RT, Tran Cao HS, Rana AA, et al. Impact of the treating hospital on care outcomes for hepatocellular carcinoma. Hepatology. 2018;68:1879–1889.

    PubMed  Google Scholar 

  14. Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology. 2018;67:358–380.

    PubMed  Google Scholar 

  15. European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69:182–236.

    Google Scholar 

  16. Kokudo N, Takemura N, Hasegawa K, et al. Clinical practice guidelines for hepatocellular carcinoma: The Japan Society of Hepatology 2017 (4th JSH-HCC guidelines) 2019 update. Hepatol Res. 2019;49:1109–1113.

    PubMed  Google Scholar 

  17. Omata M, Cheng AL, Kokudo N, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int. 2017;11:317–370.

    PubMed  Google Scholar 

  18. Ioannou GN, Green P, Kerr KF, et al. Models estimating risk of hepatocellular carcinoma in patients with alcohol or NAFLD-related cirrhosis for risk stratification. J Hepatol. 2019;71:523–533.

    PubMed  PubMed Central  Google Scholar 

  19. Sharma SA, Kowgier M, Hansen BE, et al. Toronto HCC risk index: a validated scoring system to predict 10-year risk of HCC in patients with cirrhosis. J Hepatol. 2018;68:92–99.

    Google Scholar 

  20. Papatheodoridis G, Dalekos G, Sypsa V, et al. PAGE-B predicts the risk of developing hepatocellular carcinoma in Caucasians with chronic hepatitis B on 5-year antiviral therapy. J Hepatol. 2016;64:800–806.

    CAS  PubMed  Google Scholar 

  21. Flemming JA, Yang JD, Vittinghoff E, et al. Risk prediction of hepatocellular carcinoma in patients with cirrhosis: the ADRESS-HCC risk model. Cancer. 2014;120:3485–3493.

    PubMed  Google Scholar 

  22. Yang HI, Yuen MF, Chan HL, et al. Risk estimation for hepatocellular carcinoma in chronic hepatitis B (REACH-B): development and validation of a predictive score. Lancet Oncol. 2011;12:568–574.

    PubMed  Google Scholar 

  23. de Martel C, Maucort-Boulch D, Plummer M, et al. World-wide relative contribution of hepatitis B and C viruses in hepatocellular carcinoma. Hepatology. 2015;62:1190–1200.

    PubMed  Google Scholar 

  24. Romano A, Angeli P, Piovesan S, et al. Newly diagnosed hepatocellular carcinoma in patients with advanced hepatitis C treated with DAAs: a prospective population study. J Hepatol. 2018;69:345–352.

    CAS  PubMed  Google Scholar 

  25. Ioannou GN, Green PK, Berry K. HCV eradication induced by direct-acting antiviral agents reduces the risk of hepatocellular carcinoma. J Hepatol. 2018;68:25–32.

    Google Scholar 

  26. Sangiovanni A, Prati GM, Fasani P, et al. The natural history of compensated cirrhosis due to hepatitis C virus: a 17-year cohort study of 214 patients. Hepatology. 2006;43:1303–1310.

    PubMed  Google Scholar 

  27. Kanwal F, Kramer J, Asch SM, et al. Risk of hepatocellular cancer in HCV patients treated with direct-acting antiviral agents. Gastroenterology. 2017;153:996–1005.

    CAS  PubMed  Google Scholar 

  28. Singal AG, Lim JK, Kanwal F. AGA clinical practice update on interaction between oral direct-acting antivirals for chronic hepatitis C infection and hepatocellular carcinoma: expert review. Gastroenterology. 2019;156:2149–2157.

    PubMed  Google Scholar 

  29. Wong RJ, Cheung R, Ahmed A. Nonalcoholic steatohepatitis is the most rapidly growing indication for liver transplantation in patients with hepatocellular carcinoma in the US. Hepatology. 2014;59:2188–2195.

    PubMed  Google Scholar 

  30. Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol. 2018;15:11–20.

    Google Scholar 

  31. Ascha MS, Hanouneh IA, Lopez R, et al. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology. 2010;51:1972–1978.

    PubMed  Google Scholar 

  32. White DL, Kanwal F, El-Serag HB. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin Gastroenterol Hepatol. 2012;10:1342–1359.

    PubMed  PubMed Central  Google Scholar 

  33. Mittal S, El-Serag HB, Sada YH, et al. Hepatocellular carcinoma in the absence of cirrhosis in United States veterans is associated with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2016;14:124–131.

    CAS  PubMed  Google Scholar 

  34. Perumpail RB, Wong RJ, Ahmed A, et al. Hepatocellular carcinoma in the setting of non-cirrhotic nonalcoholic fatty liver disease and the metabolic syndrome: US experience. Dig Dis Sci. 2015;60:3142–3148. https://doi.org/10.1007/s10620-015-3821-7.

    Article  CAS  PubMed  Google Scholar 

  35. Mohamad B, Shah V, Onyshchenko M, et al. Characterization of hepatocellular carcinoma (HCC) in non-alcoholic fatty liver disease (NAFLD) patients without cirrhosis. Hepatol Int. 2016;10:632–639.

    PubMed  Google Scholar 

  36. Mittal S, Sada YH, El-Serag HB, et al. Temporal trends of nonalcoholic fatty liver disease-related hepatocellular carcinoma in the veteran affairs population. Clin Gastroenterol Hepatol. 2015;13:594–601.

    PubMed  Google Scholar 

  37. Kim SY, An J, Lim YS, et al. MRI with liver-specific contrast for surveillance of patients with cirrhosis at high risk of hepatocellular carcinoma. JAMA Oncol. 2017;3:456–463.

    PubMed  PubMed Central  Google Scholar 

  38. Gopal P, Yopp AC, Waljee AK, et al. Factors that affect accuracy of alpha-fetoprotein test in detection of hepatocellular carcinoma in patients with cirrhosis. Clin Gastroenterol Hepatol. 2014;12:870–877.

    CAS  PubMed  Google Scholar 

  39. Yang JD, Dai J, Singal AG, et al. Improved performance of serum alpha-fetoprotein for hepatocellular carcinoma diagnosis in HCV cirrhosis with normal alanine transaminase. Cancer Epidemiol Biomark Prev. 2017;26:1085–1092.

    CAS  Google Scholar 

  40. Di Bisceglie AM, Hoofnagle JH. Elevations in serum alpha-fetoprotein levels in patients with chronic hepatitis B. Cancer. 1989;64:2117–2120.

    PubMed  Google Scholar 

  41. Di Bisceglie AM, Sterling RK, Chung RT, et al. Serum alpha-fetoprotein levels in patients with advanced hepatitis C: results from the HALT-C Trial. J Hepatol. 2005;43:434–441.

    PubMed  Google Scholar 

  42. Alpert E, Feller ER. α-Fetoprotein (AFP) in benign liver disease: evidence that normal liver regeneration does not induce AFP synthesis. Gastroenterology. 1978;74:856–858.

    CAS  PubMed  Google Scholar 

  43. Li D, Mallory T, Satomura S. AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clin Chim Acta. 2001;313:15–19.

    CAS  PubMed  Google Scholar 

  44. Yamashiki N, Seki T, Wakabayashi M, et al. Usefulness of lens culinaris agglutinin a-reactive fraction of a-Fetoprotein ŽAFP-L3 as a marker of distant metastasis from hepatocellular carcinoma. Oncol Rep. 1999;6:1229–1932.

    CAS  PubMed  Google Scholar 

  45. Cheng J, Wang W, Zhang Y, et al. Prognostic role of pre-treatment serum AFP-L3% in hepatocellular carcinoma: systematic review and meta-analysis. PLoS ONE. 2014;9:e87011.

    PubMed  PubMed Central  Google Scholar 

  46. Liebman HA. Isolation and characterization of a hepatoma-associated abnormal (des-γ-carboxy) prothrombin. Cancer Res. 1989;49:6493–6497.

    CAS  PubMed  Google Scholar 

  47. Zhu R, Yang J, Xu L, et al. Diagnostic performance of des-γ-carboxy prothrombin for hepatocellular carcinoma: a meta-analysis. Gastroenterol Res Pract. 2014;2014:529314.

    PubMed  PubMed Central  Google Scholar 

  48. Nakamura S, Nouso K, Sakaguchi K, et al. Sensitivity and specificity of des-gamma-carboxy prothrombin for diagnosis of patients with hepatocellular carcinomas varies according to tumor size. Am J Gastroenterol. 2006;101:2038–2043.

    CAS  PubMed  Google Scholar 

  49. Okuda H, Nakanishi T, Takatsu K, et al. Comparison of clinicopathological features of patients with hepatocellular carcinoma seropositive for α-fetoprotein alone and those seropositive for des-γ-carboxy prothrombin alone 1. J Gastroenterol Hepatol. 2001;16:1290–1296.

    CAS  PubMed  Google Scholar 

  50. Johnson PJ, Pirrie SJ, Cox TF, et al. The detection of hepatocellular carcinoma using a prospectively developed and validated model based on serological biomarkers. Cancer Epidemiol Biomark Prev. 2014;23:144–153.

    CAS  Google Scholar 

  51. Berhane S, Toyoda H, Tada T, et al. Role of the GALAD and BALAD-2 serologic models in diagnosis of hepatocellular carcinoma and prediction of survival in patients. Clin Gastroenterol Hepatol. 2016;14:875–886.

    CAS  PubMed  Google Scholar 

  52. Yang JD, Addissie BD, Mara KC, et al. GALAD score for hepatocellular carcinoma detection in comparison with liver ultrasound and proposal of GALADUS score. Cancer Epidemiol Biomarkers Prev. 2019;28:531–538.

    PubMed  Google Scholar 

  53. Best J, Bilgi H, Heider D, et al. The GALAD scoring algorithm based on AFP, AFP-L3, and DCP significantly improves detection of BCLC early stage hepatocellular carcinoma. Z Gastroenterol. 2016;54:1296–1305.

    CAS  PubMed  Google Scholar 

  54. Best J, Bechmann LP, Sowa JP, et al. GALAD score detects early hepatocellular carcinoma in an international cohort of patients with nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2020;18:728–735.

    CAS  PubMed  Google Scholar 

  55. Samoylova ML, Mehta N, Roberts JP, et al. Predictors of ultrasound failure to detect hepatocellular carcinoma. Liver Transplant. 2018;24:1171–1177.

    Google Scholar 

  56. Wang M, Sanda M, Comunale MA, et al. Changes in the glycosylation of kininogen and the development of a kininogen-based algorithm for the early detection of HCC. Cancer Epidemiol Biomark Prev. 2017;26:795–803.

    CAS  Google Scholar 

  57. Kisiel JB, Dukek BA, Kanipakam R, et al. Hepatocellular carcinoma detection by plasma methylated DNA: discovery, phase I pilot, and phase II clinical validation. Hepatology. 2019;69:1180–1192.

    CAS  PubMed  Google Scholar 

  58. Hemken PM, Sokoll LJ, Yang X, et al. Validation of a novel model for the early detection of hepatocellular carcinoma. Clin Proteom. 2019;16:1–9.

    Google Scholar 

  59. Pepe MS, Etzioni R, Feng Z, et al. Phases of biomarker development for early detection of cancer. J Natl Cancer Inst. 2001;93:1054–1061.

    CAS  PubMed  Google Scholar 

  60. Ptolemy AS, Rifai N. What is a biomarker? Research investments and lack of clinical integration necessitate a review of biomarker terminology and validation schema. Scand J Clin Lab Investig. 2010;70:6–14.

    Google Scholar 

  61. Zhao C, Xing F, Yeo YH, et al. Only one-third of hepatocellular carcinoma cases are diagnosed via screening or surveillance: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2020;32:406–419.

    PubMed  Google Scholar 

  62. Singal AG, Yopp A, Skinner CS, et al. Utilization of hepatocellular carcinoma surveillance among American patients: a systematic review. J Gen Intern Med. 2012;27:861–867.

    PubMed  PubMed Central  Google Scholar 

  63. McGowan CE, Edwards TP, Luong MU, et al. Suboptimal surveillance for and knowledge of hepatocellular carcinoma among primary care providers. Clin Gastroenterol Hepatol. 2015;13:799–804.

    PubMed  Google Scholar 

  64. Sanyal A, Poklepovic A, Moyneur E, et al. Population-based risk factors and resource utilization for HCC: US perspective. Curr Med Res Opin. 2010;26:2183–2191.

    CAS  PubMed  Google Scholar 

  65. Russo MW, Koteish AA, Fuchs M, et al. Workforce in hepatology: update and a critical need for more information. Hepatology. 2017;65:336–340.

    PubMed  Google Scholar 

  66. Dalton-Fitzgerald E, Tiro J, Kandunoori P, Halm EA, et al. Practice patterns and attitudes of primary care providers and barriers to surveillance of hepatocellular carcinoma in patients with cirrhosis. Clin Gastroenterol Hepatol. 2015;13:791–798.

    PubMed  Google Scholar 

  67. Simmons OL, Feng Y, Parikh ND, et al. Primary care provider practice patterns and barriers to hepatocellular carcinoma surveillance. Clin Gastroenterol Hepatol. 2019;17:766–773.

    PubMed  Google Scholar 

  68. Farvardin S, Patel J, Khambaty M, et al. Patient-reported barriers are associated with lower hepatocellular carcinoma surveillance rates in patients with cirrhosis. Hepatology. 2017;65:875–884.

    PubMed  Google Scholar 

  69. Goldberg DS, Taddei TH, Serper M, et al. Identifying barriers to hepatocellular carcinoma surveillance in a national sample of patients with cirrhosis. Hepatology. 2017;65:864–874.

    PubMed  Google Scholar 

  70. Artinyan A, Mailey B, Sanchez-Luege N, et al. Race, ethnicity, and socioeconomic status influence the survival of patients with hepatocellular carcinoma in the United States. Cancer. 2010;116:1367–1377.

    PubMed  Google Scholar 

  71. Singal AG, Li X, Tiro J, et al. Racial, social, and clinical determinants of hepatocellular carcinoma surveillance. Am J Med. 2015;128:90-e1.

    Google Scholar 

  72. Singal AG, Yopp AC, Gupta S, et al. Failure rates in the hepatocellular carcinoma surveillance process. Cancer Prev Res. 2012;5:1124–1130.

    Google Scholar 

  73. Beste LA, Ioannou GN, Yang Y, et al. Improved surveillance for hepatocellular carcinoma with a primary care–oriented clinical reminder. Clin Gastroenterol Hepatol. 2015;13:172–179.

    PubMed  Google Scholar 

  74. Singal AG, Tiro JA, Murphy CC, et al. Mailed outreach invitations significantly improve HCC surveillance rates in patients with cirrhosis: a randomized clinical trial. Hepatology. 2019;69:121–130.

    PubMed  Google Scholar 

  75. Aberra FB, Essenmacher M, Fisher N, et al. Quality improvement measures lead to higher surveillance rates for hepatocellular carcinoma in patients with cirrhosis. Dig Dis Sci. 2013;58:1157–1160. https://doi.org/10.1007/s10620-012-2461-4.

    Article  PubMed  Google Scholar 

  76. Caffery LJ, Farjian M, Smith AC. Telehealth interventions for reducing waiting lists and waiting times for specialist outpatient services: a scoping review. J Telemed Telecare. 2016;22:504–512.

    PubMed  Google Scholar 

  77. Singal AG, Tiro JA, Gupta S. Improving hepatocellular carcinoma screening: applying lessons from colorectal cancer screening. Clin Gastroenterol Hepatol. 2013;11:472–477.

    PubMed  Google Scholar 

Download references

Acknowledgments

This manuscript is part of a series of review articles on hepatocellular carcinoma that was developed as part of an educational initiative from the Hepatocellular Carcinoma Research Committee of the Chronic Liver Disease Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Mehta.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L.X., Mehta, N. Does Hepatocellular Carcinoma Surveillance Increase Survival in At-Risk Populations? Patient Selection, Biomarkers, and Barriers. Dig Dis Sci 65, 3456–3462 (2020). https://doi.org/10.1007/s10620-020-06550-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06550-6

Keywords

Navigation