Skip to main content

Advertisement

Log in

Specific Smad2/3 Linker Phosphorylation Indicates Esophageal Non-neoplastic and Neoplastic Stem-Like Cells and Neoplastic Development

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

There is little known about stem cells in human non-neoplastic and neoplastic esophageal epithelia. We have demonstrated expression of linker threonine-phosphorylated Smad2/3 (pSmad2/3L-Thr), suggesting presence of stem-like cells in mouse esophageal epithelium, and identified presence of pSmad2/3L-Thr-positive cells that might function as cancer stem cells in mouse model of colorectal carcinoma.

Aims

We explore whether pSmad2/3L-Thr can be used as a biomarker for stem cells of human esophageal epithelia and/or neoplasms.

Methods

We have used esophageal tissues from inpatients undergoing endoscopic submucosal dissection and performed double immunofluorescent staining of pSmad2/3L-Thr and Ki67, CDK4, p63, Sox2, CK14, p53, ALDH1, CD44 or D2-40 after which the sections were stained with hematoxylin and eosin.

Results

pSmad2/3L-Thr-positive cells showed immunohistochemical co-localization with CDK4, p63, CD44 and Sox2 in the basal and parabasal layers of non-neoplastic esophageal epithelia. In esophageal neoplasms, they showed immunohistochemical co-localization with p53, CDK4, ALDH1 and CD44. There was a significant increase in the percentage of pSmad2/3L-Thr-positive cells in the p53-positive neoplastic cell population with development of esophageal neoplasia. pSmad2/3L-Thr-positive cells localized to the lower section of low-grade intraepithelial neoplasia and were observed up to the upper section in carcinoma in situ. In invasive squamous cell carcinoma, they were scattered throughout the tumor with disappearance of polarity and were found in intraepithelial primary lesions and sites of submucosal and vessel invasion.

Conclusions

We determined significant expression of pSmad2/3L-Thr in human esophageal non-neoplastic and neoplastic epithelia, indicating that these are epithelial stem-like cells and cancer stem cells, respectively, that correlate with developing esophageal neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bosman FT, International Agency for Research on Cancer. WHO classification of tumours of the digestive system. Lyon, France: International Agency for Research on Cancer; 2010.

  2. Sarbia M, Porschen R, Borchard F, Horstmann O, Willers R, Gabbert HE. Incidence and prognostic significance of vascular and neural invasion in squamous cell carcinomas of the esophagus. Int J Cancer.. 1995;61:333–336.

    CAS  PubMed  Google Scholar 

  3. Wang LD, Hong JY, Qiu SL, Gao H, Yang CS. Accumulation of p53 protein in human esophageal precancerous lesions: a possible early biomarker for carcinogenesis. Cancer Res.. 1993;53:1783–1787.

    CAS  PubMed  Google Scholar 

  4. Volant A, Nousbaum JB, Giroux MA, et al. p53 protein accumulation in oesophageal squamous cell carcinomas and precancerous lesions. J Clin Pathol. 1995;48:531–534.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kobayashi M, Kawachi H, Takizawa T, et al. p53 Mutation analysis of low-grade dysplasia and high-grade dysplasia/carcinoma in situ of the esophagus using laser capture microdissection. Oncology. 2006;71:237–245.

    CAS  PubMed  Google Scholar 

  6. Suzuki H, Igarashi S, Nojima M, et al. IGFBP7 is a p53-responsive gene specifically silenced in colorectal cancer with CpG island methylator phenotype. Carcinogenesis. 2010;31:342–349.

    CAS  PubMed  Google Scholar 

  7. Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66:9339–9344.

    CAS  PubMed  Google Scholar 

  8. Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390:465–471.

    CAS  PubMed  Google Scholar 

  9. Massague J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753–791.

    CAS  PubMed  Google Scholar 

  10. Wrana JL. Crossing Smads. Sci STKE. 2000;2000:re1.

  11. Kretzschmar M, Doody J, Timokhina I, Massague J. A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras. Genes Dev. 1999;13:804–816.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Matsuura I, Denissova NG, Wang G, He D, Long J, Liu F. Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature.. 2004;430:226–231.

    CAS  PubMed  Google Scholar 

  13. Mori S, Matsuzaki K, Yoshida K, et al. TGF-beta and HGF transmit the signals through JNK-dependent Smad2/3 phosphorylation at the linker regions. Oncogene. 2004;23:7416–7429.

    CAS  PubMed  Google Scholar 

  14. Tarasewicz E, Jeruss JS. Phospho-specific Smad3 signaling: impact on breast oncogenesis. Cell Cycle. 2012;11:2443–2451.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Matsuzaki K. Smad3 phosphoisoform-mediated signaling during sporadic human colorectal carcinogenesis. Histol Histopathol. 2006;21:645–662.

    CAS  PubMed  Google Scholar 

  16. Matsuzaki K, Kitano C, Murata M, et al. Smad2 and Smad3 phosphorylated at both linker and COOH-terminal regions transmit malignant TGF-beta signal in later stages of human colorectal cancer. Cancer Res. 2009;69:5321–5330.

    CAS  PubMed  Google Scholar 

  17. Sapkota G, Knockaert M, Alarcon C, Montalvo E, Brivanlou AH, Massague J. Dephosphorylation of the linker regions of Smad1 and Smad2/3 by small C-terminal domain phosphatases has distinct outcomes for bone morphogenetic protein and transforming growth factor-beta pathways. J Biol Chem. 2006;281:40412–40419.

    CAS  PubMed  Google Scholar 

  18. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425:577–584.

    CAS  PubMed  Google Scholar 

  19. Fukui T, Kishimoto M, Nakajima A, et al. The specific linker phosphorylation of Smad2/3 indicates epithelial stem cells in stomach; particularly increasing in mucosae of Helicobacter-associated gastritis. J Gastroenterol.. 2011;46:456–468.

    CAS  PubMed  Google Scholar 

  20. Kishimoto M, Fukui T, Suzuki R, et al. Phosphorylation of smad2/3 at specific linker threonine indicates slow-cycling intestinal stem-like cells before reentry to cell cycle. Dig Dis Sci.. 2015;60:362–374.

    CAS  PubMed  Google Scholar 

  21. Takahashi Y, Fukui T, Kishimoto M, et al. Phosphorylation of Smad2/3 at the specific linker threonine residue indicates slow-cycling esophageal stem-like cells before re-entry to the cell cycle. Dis Esophagus. 2016;29:107–115.

    CAS  PubMed  Google Scholar 

  22. Suzuki R, Fukui T, Kishimoto M, et al. Smad2/3 linker phosphorylation is a possible marker of cancer stem cells and correlates with carcinogenesis in a mouse model of colitis-associated colorectal cancer. J Crohns Colitis. 2015;9:565–574.

    PubMed  Google Scholar 

  23. Furukawa F, Matsuzaki K, Mori S, et al. p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts. Hepatology. 2003;38:879–889.

    CAS  PubMed  Google Scholar 

  24. Dunaway S, Rothaus A, Zhang Y, Luisa Kadekaro A, Andl T, Andl CD. Divide and conquer: two stem cell populations in squamous epithelia, reserves and the active duty forces. Int J Oral Sci. 2019;11:26.

    PubMed  PubMed Central  Google Scholar 

  25. Blanpain C, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol.. 2009;10:207–217.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell.. 2008;132:598–611.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer.. 1953;6:963–968.

    CAS  PubMed  Google Scholar 

  28. Slaughter DP. Multicentric origin of intraoral carcinoma. Surgery.. 1946;20:133–146.

    CAS  PubMed  Google Scholar 

  29. Hanson JA, Gillespie JW, Grover A, et al. Gene promoter methylation in prostate tumor-associated stromal cells. J Natl Cancer Inst.. 2006;98:255–261.

    CAS  PubMed  Google Scholar 

  30. Roesch-Ely M, Nees M, Karsai S, et al. Proteomic analysis reveals successive aberrations in protein expression from healthy mucosa to invasive head and neck cancer. Oncogene. 2007;26:54–64.

    CAS  PubMed  Google Scholar 

  31. Heaphy CM, Bisoffi M, Fordyce CA, et al. Telomere DNA content and allelic imbalance demonstrate field cancerization in histologically normal tissue adjacent to breast tumors. Int J Cancer.. 2006;119:108–116.

    CAS  PubMed  Google Scholar 

  32. Lee YC, Wang HP, Wang CP, et al. Revisit of field cancerization in squamous cell carcinoma of upper aerodigestive tract: better risk assessment with epigenetic markers. Cancer Prev Res (Phila).. 2011;4:1982–1992.

    CAS  PubMed  Google Scholar 

  33. Oka D, Yamashita S, Tomioka T, et al. The presence of aberrant DNA methylation in noncancerous esophageal mucosae in association with smoking history: a target for risk diagnosis and prevention of esophageal cancers. Cancer.. 2009;115:3412–3426.

    CAS  PubMed  Google Scholar 

  34. Yakoub D, Keun HC, Goldin R, Hanna GB. Metabolic profiling detects field effects in nondysplastic tissue from esophageal cancer patients. Cancer Res.. 2010;70:9129–9136.

    CAS  PubMed  Google Scholar 

  35. Roesch-Ely M, Leipold A, Nees M, et al. Proteomic analysis of field cancerization in pharynx and oesophagus: a prospective pilot study. J Pathol.. 2010;221:462–470.

    PubMed  Google Scholar 

  36. Maehara R, Fujikura K, Takeuchi K, et al. SOX2-silenced squamous cell carcinoma: a highly malignant form of esophageal cancer with SOX2 promoter hypermethylation. Mod Pathol.. 2018;31:83–92.

    CAS  PubMed  Google Scholar 

  37. Ishida H, Kasajima A, Kamei T, et al. SOX2 and Rb1 in esophageal small-cell carcinoma: their possible involvement in pathogenesis. Mod Pathol.. 2017;30:660–671.

    CAS  PubMed  Google Scholar 

  38. Malumbres M, Barbacid M. Mammalian cyclin-dependent kinases. Trends Biochem Sci. 2005;30:630–641.

    CAS  PubMed  Google Scholar 

  39. Susaki E, Nakayama K, Nakayama KI. Cyclin D2 translocates p27 out of the nucleus and promotes its degradation at the G0-G1 transition. Mol Cell Biol. 2007;27:4626–4640.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Furukawa Y, Kikuchi J, Nakamura M, Iwase S, Yamada H, Matsuda M. Lineage-specific regulation of cell cycle control gene expression during haematopoietic cell differentiation. Br J Haematol.. 2000;110:663–673.

    CAS  PubMed  Google Scholar 

  41. Daniely Y, Liao G, Dixon D, et al. Critical role of p63 in the development of a normal esophageal and tracheobronchial epithelium. Am J Physiol Cell Physiol. 2004;287:C171–181.

    CAS  PubMed  Google Scholar 

  42. Zoller M. CD44, hyaluronan, the hematopoietic stem cell, and leukemia-initiating cells. Front Immunol. 2015;6:235.

    PubMed  PubMed Central  Google Scholar 

  43. Kalabis J, Oyama K, Okawa T, et al. A subpopulation of mouse esophageal basal cells has properties of stem cells with the capacity for self-renewal and lineage specification. J Clin Invest. 2008;118:3860–3869.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Weidner N, Moore DH 2nd, Vartanian R. Correlation of Ki-67 antigen expression with mitotic figure index and tumor grade in breast carcinomas using the novel “paraffin”-reactive MIB1 antibody. Hum Pathol. 1994;25:337–342.

    CAS  PubMed  Google Scholar 

  45. Wrighton KH, Willis D, Long J, Liu F, Lin X, Feng XH. Small C-terminal domain phosphatases dephosphorylate the regulatory linker regions of Smad2 and Smad3 to enhance transforming growth factor-beta signaling. J Biol Chem. 2006;281:38365–38375.

    CAS  PubMed  Google Scholar 

  46. Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–567.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao JS, Li WJ, Ge D, et al. Tumor initiating cells in esophageal squamous cell carcinomas express high levels of CD44. PLoS One. 2011;6:e21419.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA. 2007;104:973–978.

    CAS  PubMed  Google Scholar 

  49. Yang L, Ren Y, Yu X, et al. ALDH1A1 defines invasive cancer stem-like cells and predicts poor prognosis in patients with esophageal squamous cell carcinoma. Mod Pathol. 2014;27:775–783.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grant-in-aid for Research Grant (B) from Japanese Foundation for Research and Promotion of Endoscopy and grant-in-aid for Scientific Research (C) from Japan Society for the Promotion of Science (16K09330, 25460938).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiro Fukui.

Ethics declarations

Conflict of interest

The authors have declared that no potential conflicts of interest exist.

Human and animal rights

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional (number 2012101) and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horitani, S., Fukui, T., Tanimura, Y. et al. Specific Smad2/3 Linker Phosphorylation Indicates Esophageal Non-neoplastic and Neoplastic Stem-Like Cells and Neoplastic Development. Dig Dis Sci 66, 1862–1874 (2021). https://doi.org/10.1007/s10620-020-06489-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06489-8

Keywords

Navigation