Skip to main content

Advertisement

Log in

Integrin-Linked-Kinase Overexpression Is Implicated in Mechanisms of Genomic Instability in Human Colorectal Cancer

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Genomic instability is a hallmark of cancer cells contributing to tumor development and progression. Integrin-linked kinase (ILK) is a focal adhesion protein with well-established role in carcinogenesis. We have previously shown that ILK overexpression is critically implicated in human colorectal cancer (CRC) progression. In light of the recent findings that ILK regulates centrosomes and mitotic spindle formation, we aimed to determine its implication in mechanisms of genomic instability in human CRC.

Methods

Association of ILK expression with markers of genomic instability (micronuclei formation, nucleus size, and intensity) was investigated in diploid human colon cancer cells HCT116 upon ectopic ILK overexpression, by immunofluorescence and in human CRC samples by Feulgen staining. We also evaluated the role of ILK in mitotic spindle formation, by immunofluorescence, in HCT116 cells upon inhibition and overexpression of ILK. Finally, we evaluated association of ILK overexpression with markers of DNA damage (p-H2AX, p-ATM/ATR) in human CRC tissue samples by immunohistochemistry and in ILK-overexpressing cells by immunofluorescence.

Results

We showed that ILK overexpression is associated with genomic instability markers in human colon cancer cells and tissues samples. Aberrant mitotic spindles were observed in cells treated with specific ILK inhibitor (QLT0267), while ILK-overexpressing cells failed to undergo nocodazole-induced mitotic arrest. ILK overexpression was also associated with markers of DNA damage in HCT116 cells and human CRC tissue samples.

Conclusions

The above findings indicate that overexpression of ILK is implicated in mechanisms of genomic instability in CRC suggesting a novel role of this protein in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11:220–228.

    CAS  PubMed  Google Scholar 

  2. Shen Z. Genomic instability and cancer: an introduction. J Mol Cell Biol. 2011;3:1–3.

    CAS  PubMed  Google Scholar 

  3. Sarni D, Kerem B. Oncogene-induced replication stress drives genome instability and tumorigenesis. Int J Mol Sci. 2017;18:1339.

    PubMed Central  Google Scholar 

  4. Kotsantis P, Petermann E, Boulton SJ. Mechanisms of oncogene-induced replication stress: Jigsaw falling into place. Cancer Discov. 2018;8:537–555.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319:525–532.

    CAS  PubMed  Google Scholar 

  6. Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature. 1997;386:623–627.

    CAS  PubMed  Google Scholar 

  7. Thompson SL, Bakhoum SF, Compton DA. Mechanisms of chromosomal instability. Curr Biol. 2010;20:R285–R295.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Burrell RA, McClelland SE, Endesfelder D, et al. Replication stress links structural and numerical cancer chromosomal instability. Nature. 2013;494:492–496.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. McDonald PC, Fielding AB, Dedhar S. Integrin-linked kinase—essential roles in physiology and cancer biology. J Cell Sci. 2008;121:3121–3132.

    CAS  PubMed  Google Scholar 

  10. Hannigan G, Troussard AA, Dedhar S. Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nat Rev Cancer. 2005;5:51–63.

    CAS  PubMed  Google Scholar 

  11. Bravou V, Klironomos G, Papadaki E, Stefanou D, Varakis J. Integrin-linked kinase (ILK) expression in human colon cancer. Br J Cancer. 2003;89:2340–2341.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bravou V, Klironomos G, Papadaki E, Taraviras S, Varakis J. ILK over-expression in human colon cancer progression correlates with activation of β-catenin, down-regulation of E-cadherin and activation of the Akt–FKHR pathway. J Pathol. 2006;208:91–99.

    CAS  PubMed  Google Scholar 

  13. Tsoumas D, Nikou S, Giannopoulou E, et al. ILK expression in colorectal cancer is associated with EMT, cancer stem cell markers and chemoresistance. Cancer Genom. Proteom.. 2018;15:127–141.

    CAS  Google Scholar 

  14. Fielding AB, Dobreva I, McDonald PC, Foster LJ, Dedhar S. Integrin-linked kinase localizes to the centrosome and regulates mitotic spindle organization. J Cell Biol. 2008;180:681–689.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Amin MB, Edge S, Greene F, et al. AJCC cancer staging manual. 8th ed. New York: Springer; 2017.

    Google Scholar 

  16. Bosman ND, Carneiro FT, Hruban F, Theise RH. WHO classification of tumours of the digestive system. 4th ed. Lyon: IARC Press; 2010.

    Google Scholar 

  17. Karavias D, Maroulis I, Papadaki H, et al. Overexpression of CDT1 is a predictor of poor survival in patients with hepatocellular carcinoma. J Gastrointest Surg. 2016;20:568–579.

    PubMed  Google Scholar 

  18. de Almeida TMB, Leitão RC, Andrade JD, Beçak W, Carrilho FJ, Sonohara S. Detection of micronuclei formation and nuclear anomalies in regenerative nodules of human cirrhotic livers and relationship to hepatocellular carcinoma. Cancer Genet Cytogenet. 2004;150:16–21.

    PubMed  Google Scholar 

  19. Waldner C, Roose M, Ryffel GU. Red fluorescent Xenopus laevis: a new tool for grafting analysis. BMC Dev Biol. 2009;9:37.

    PubMed  PubMed Central  Google Scholar 

  20. Goulioumis AK, Bravou V, Varakis J, Goumas P, Papadaki H. Integrin-linked kinase cytoplasmic and nuclear expression in laryngeal carcinomas. Virchows Arch. 2008;453:511.

    CAS  PubMed  Google Scholar 

  21. Fielding AB, Lim S, Montgomery K, Dobreva I, Dedhar S. A critical role of integrin-linked kinase, ch-TOG and TACC3 in centrosome clustering in cancer cells. Oncogene. 2011;30:521–534.

    CAS  PubMed  Google Scholar 

  22. Lim S, Kawamura E, Fielding AB, Maydan M, Dedhar S. Integrin-linked kinase regulates interphase and mitotic microtubule dynamics. PLoS One. 2013;8:e53702.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wickström SA, Lange A, Hess MW, et al. Integrin-linked kinase controls microtubule dynamics required for plasma membrane targeting of caveolae. Dev Cell. 2010;19:574–588.

    PubMed  PubMed Central  Google Scholar 

  24. Vaziri C, Saxena S, Jeon Y, et al. A p53-dependent check point pathway prevents rereplication. Mol Cell. 2003;11:997–1008.

    CAS  PubMed  Google Scholar 

  25. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40:179–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674.

    CAS  Google Scholar 

  27. Bettencourt-Dias M, Giet R, Sinka R, et al. Genome-wide survey of protein kinases required for cell cycle progression. Nature. 2004;432:980–987.

    CAS  PubMed  Google Scholar 

  28. Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature. 2017;548:466–470.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang S, Mercado-Uribe I, Xing Z, Sun B, Kuang J, Liu J. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene. 2014;33:116–128.

    CAS  PubMed  Google Scholar 

  30. Gergely F, Draviam VM, Raff JW. The ch-TOG/XMAP215 protein is essential for spindle pole organization in human somatic cells. Genes Dev. 2003;17:336–341.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Barros TP, Kinoshita K, Hyman AA, Raff JW. Aurora A activates D-TACC–Msps complexes exclusively at centrosomes to stabilize centrosomal microtubules. J Cell Biol. 2005;170:1039–1046.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kinoshita K, Noetzel TL, Pelletier L, et al. Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis. J Cell Biol. 2005;170:1047–1055.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zieve GW, Turnbull D, Mullins JM, McIntosh JR. Production of large numbers of mitotic mammalian cells by use of the reversible microtubule inhibitor nocodazole. Exp Cell Res. 1980;126:397–405.

    CAS  PubMed  Google Scholar 

  34. Rudner AD, Murray AW. The spindle assembly checkpoint. Curr Opin Cell Biol. 1996;8:733–780.

    Google Scholar 

  35. Mikhailov RCA, Cole RW. DNA damage during mitosis in human cells delays the metaphase/anaphase transition via the spindle-assembly checkpoint. Curr Biol. 2002;12:1797–1806.

    CAS  PubMed  Google Scholar 

  36. Xu HZ, Wang ZQ, Shan HZ, et al. Overexpression of Fbxo6 inactivates spindle checkpoint by interacting with Mad2 and BubR1. Cell Cycle. 2018;17:2779–2789.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wei Y, Multi S, Yang CR, et al. Spindle assembly checkpoint regulates mitotic cell cycle progression during preimplantation embryo development. PLoS ONE. 2011;6:e21557.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Blajeski AL, Phan VA, Kottke TJ, Kaufmann SH. G(1) and G(2) cell-cycle arrest following microtubule depolymerization in human breast cancer cells. J Clin Invest. 2002;110:91–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Singh A, Xu YJ. The cell killing mechanisms of hydroxyurea. Genes (Basel). 2016;7:99.

    CAS  Google Scholar 

  40. Kinner A, Wu W, Staudt C, Iliakis G. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucl Acids Res. 2008;36:5678–5694.

    CAS  PubMed  Google Scholar 

  41. Ding D, Zhang Y, Wang J, et al. Induction and inhibition of the pan-nuclear gamma-H2AX response in resting human peripheral blood lymphocytes after X-ray irradiation. Cell Death Discov. 2016;2:16011.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Parsels LA, Parsels JD, Tanska DM, Maybaum J, Lawrence TS, Morgan MA. The contribution of DNA replication stress marked by high-intensity, pan-nuclear γH2AX staining to chemosensitization by CHK1 and WEE1 inhibitors. Cell Cycle. 2018;17:1076–1086.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science. 2008;319:1352–1355.

    CAS  PubMed  Google Scholar 

  44. Radeva G, Petrocelli T, Behrend E, et al. Overexpression of the integrin-linked kinase promotes anchorage-independent cell cycle progression. J Biol Chem. 1997;272:13937–13944.

    CAS  PubMed  Google Scholar 

  45. Burds AA, Lutum AS, Sorger PK. Generating chromosome instability through the simultaneous deletion of Mad2 and p53. Proc Natl Acad Sci USA. 2005;102:11296–11301.

    CAS  PubMed  Google Scholar 

  46. Chen Z, Trotman LC, Shaffer D, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 2005;436:725–730.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the Advanced Light Microscopy Unit of the Medical School at the University of Patras. We are also grateful to Dr. Alexandra Kanellou and Dr. Andreas Panagopoulos for their assistance and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasiliki Bravou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was performed in accordance with the Helsinki Declaration and was approved by the Committee on Research and Ethics and the Scientific Committee of the University Hospital of Patras, Greece. Since archival tissue blocks were used retrospectively, a written informed consent was waived by the ethics committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chadla, P., Arbi, M., Nikou, S. et al. Integrin-Linked-Kinase Overexpression Is Implicated in Mechanisms of Genomic Instability in Human Colorectal Cancer. Dig Dis Sci 66, 1510–1523 (2021). https://doi.org/10.1007/s10620-020-06364-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06364-6

Keywords

Navigation