Skip to main content

Advertisement

Log in

Infectious Complications of Acute Pancreatitis Is Associated with Peripheral Blood Phagocyte Functional Exhaustion

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Infected pancreatic necrosis is one of the most severe complications of acute pancreatitis (AP). The development of secondary infection doubles the risk of death during the late stage of necrotizing pancreatitis. Phagocytes play a major role in AP pathogenesis, as well as in local and systemic complications of the disease.

Aims

We aimed to investigate the relationship between quantitative and functional indices of circulating phagocyte at the time of admission and onset of infectious complications in patients with AP afterward.

Methods

A post hoc analysis of 97 patients with AP was conducted. The metabolic state of peripheral blood neutrophils and monocytes was analyzed based on their phagocytic activity and generation of reactive oxygen species (ROS), which were determined by flow cytometry on admission. The clinical end point was marked by onset of infectious complications of AP.

Results

On admission, baseline values and reactivity reserve of monocyte and neutrophil phagocytic activity in AP patients, who developed septic complications, were substantially decreased, whereas monocyte ROS generation was dramatically increased as compared to the group without infectious processes. ROC curve was obtained both for neutrophil and monocyte phagocytosis reactivity reserve expressed as modulation coefficient values and categorized as the risk factor of infectious complications, showing an area under curve of 0.95 (P < 0.0001) and 0.84 (P < 0.0001), respectively.

Conclusions

Early (at the time of admission) detection of quantitative and functional indices of circulating phagocytes can be useful for the prediction of septic complications in SAP patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Roberts SE, Morrison-Rees S, John A, Williams JG, Brown TH, Samuel DG. The incidence and aetiology of acute pancreatitis across Europe. Pancreatology. 2017;17:155–165.

    Article  PubMed  Google Scholar 

  2. Petrov MS, Yadav D. Global epidemiology and holistic prevention of pancreatitis. Nat Rev Gastroenterol Hepatol. 2019;16:175–184.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Maheshwari R, Subramanian RM. Severe acute pancreatitis and necrotizing pancreatitis. Crit Care Clin. 2016;32:279–290.

    Article  PubMed  Google Scholar 

  4. Boumitri C, Brown E, Kahaleh M. Necrotizing pancreatitis: current management and therapies. Clin Endosc. 2017;50:357–365.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brown LA, Hore TA, Phillips AR, Windsor JA, Petrov MS. A systematic review of the extra-pancreatic infectious complications in acute pancreatitis. Pancreatology. 2014;14:436–443.

    Article  PubMed  Google Scholar 

  6. Werge M, Novovic S, Schmidt PN, Gluud LL. Infection increases mortality in necrotizing pancreatitis: a systematic review and meta-analysis. Pancreatology. 2016;16:698–707.

    Article  PubMed  Google Scholar 

  7. van Grinsven J, van Brunschot S, Bakker OJ, et al. Diagnostic strategy and timing of intervention in infected necrotizing pancreatitis: an international expert survey and case vignette study. HPB (Oxford). 2016;18:49–56.

    Article  Google Scholar 

  8. Popa CC. Prognostic biological factors in severe acute pancreatitis. J Med Life. 2014;7:525–528.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Staubli SM, Oertli D, Nebiker CA. Laboratory markers predicting severity of acute pancreatitis. Clin Res Hepatol Gastroenterol. 2018;52:273–283.

    Google Scholar 

  10. Wilson J, Zarabi S. BET 1: SIRS criteria as a way of predicting mortality in acute pancreatitis. Emerg Med J. 2017;34:621–622.

    PubMed  Google Scholar 

  11. Yang N, Li B, Ye B, et al. The long-term quality of life in patients with persistent inflammation-immunosuppression and catabolism syndrome after severe acute pancreatitis: a retrospective cohort study. J Crit Care. 2017;42:101–106.

    Article  CAS  PubMed  Google Scholar 

  12. Kylänpää ML, Repo H, Puolakkainen PA. Inflammation and immunosuppression in severe acute pancreatitis. World J Gastroenterol. 2010;16:2867–2872.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Yang ZW, Meng XX, Xu P. Central role of neutrophil in the pathogenesis of severe acute pancreatitis. J Cell Mol Med. 2015;19:2513–2520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gukovskaya AS, Gukovsky I, Algül H, Habtezion A. Autophagy, inflammation, and immune dysfunction in the pathogenesis of pancreatitis. Gastroenterology. 2017;153:1212–1226.

    Article  CAS  PubMed  Google Scholar 

  15. Liu G, Tao J, Zhu Z, Wang W. The early prognostic value of inflammatory markers in patients with acute pancreatitis. Clin Res Hepatol Gastroenterol. 2018;43:330–337.

    Article  PubMed  CAS  Google Scholar 

  16. Yu ZX, Chen XC, Zhang BY, Liu N, Gu Q. Association between HLA-DR expression and multidrug-resistant infection in patients with severe acute pancreatitis. Curr Med Sci. 2018;38:449–454.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang H, Ling XL, Wu YY, et al. CD64 expression is increased in patients with severe acute pancreatitis: clinical significance. Gut Liver. 2014;8:445–451.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lin J, Li Z, Zheng Y, et al. Elevated presepsin levels are associated with severity and prognosis of severe acute pancreatitis. Clin Lab. 2016;62:1699–1708.

    CAS  PubMed  Google Scholar 

  19. Chakraborty M, Hickey AJ, Petrov MS, et al. Mitochondrial dysfunction in peripheral blood mononuclear cells in early experimental and clinical acute pancreatitis. Pancreatology. 2016;16:739–747.

    Article  CAS  PubMed  Google Scholar 

  20. Vinnik YS, Dunaevskaya SS, Antufrieva DA. Diagnostic value of the integral hematological indexes and chemiluminescence of neutrophils in severe acute pancreatitis. Eksp Klin Gastroenterol. 2016;10:86–90.

    Google Scholar 

  21. El-Benna J, Hurtado-Nedelec M, Marzaioli V, Marie JC, Gougerot-Pocidalo MA, Dang PM. Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunol Rev. 2016;273:180–193.

    Article  CAS  PubMed  Google Scholar 

  22. Leliefeld PH, Wessels CM, Leenen LP, Koenderman L, Pillay J. The role of neutrophils in immune dysfunction during severe inflammation. Crit Care. 2016;20:73.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kuuliala K, Penttilä AK, Kaukonen KM, et al. Signalling profiles of blood leucocytes in sepsis and in acute pancreatitis in relation to disease severity. Scand J Immunol. 2018;87:88–98.

    Article  CAS  PubMed  Google Scholar 

  24. Banks PA, Bollen TL, Dervenis C, et al. Classification of acute pancreatitis—2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2013;62:102–111.

    Article  PubMed  Google Scholar 

  25. Talukdar R, Clemens M, Vege SS. Moderately severe acute pancreatitis: prospective validation of this new subgroup of acute pancreatitis. Pancreas. 2012;41:306–309.

    Article  PubMed  Google Scholar 

  26. Rudyk M, Fedorchuk O, Susak Y, Nowicky Y, Skivka L. Introduction of antineoplastic drug NSC631570 in an inpatient and outpatient setting: comparative evaluation of biological effects. Asian J Pharm Sci. 2016;11:308–317.

    Article  Google Scholar 

  27. Honda T, Uehara T, Matsumoto G, Arai S, Sugano M. Neutrophil left shift and white blood cell count as markers of bacterial infection. Clin Chim Acta. 2016;457:46–53.

    Article  CAS  PubMed  Google Scholar 

  28. Garcia LG, Lemaire S, Kahl BC, et al. Influence of the protein kinase C activator phorbol myristate acetate on the intracellular activity of antibiotics against hemin- and menadione-auxotrophic small-colony variant mutants of Staphylococcus aureus and their wild-type parental strain in human THP-1 cells. Antimicrob Agents Chemother. 2012;56:6166–6174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Larsen EC, DiGennaro JA, Saito N, et al. Differential requirement for classic and novel PKC isoforms in respiratory burst and phagocytosis in RAW 264.7 cells. J Immunol. 2000;165:2809–2817.

    Article  CAS  PubMed  Google Scholar 

  30. Schepers NJ, Bakker OJ, Besselink MG, et al. Impact of characteristics of organ failure and infected necrosis on mortality in necrotising pancreatitis. Gut. 2019;68:1044–1051.

    Article  CAS  PubMed  Google Scholar 

  31. Wang M, Wei A, Guo Q, et al. Clinical outcomes of combined necrotizing pancreatitis versus extrapancreatic necrosis alone. Pancreatology. 2016;16:57–65.

    Article  PubMed  Google Scholar 

  32. Janeway CA, Travers P, Walport M, et al. Immunobiology: The Immune System in Health and Disease. 5th ed. New York: Garland Science; 2001.

    Google Scholar 

  33. Watanabe T, Kudo M, Strober W. Immunopathogenesis of pancreatitis. Mucosal Immunol. 2017;10:283–298.

    Article  CAS  PubMed  Google Scholar 

  34. Bartel M, Hänsch GM, Giese T, et al. Abnormal crosstalk between pancreatic acini and macrophages during the clearance of apoptotic cells in chronic pancreatitis. J Pathol. 2008;215:195–203.

    Article  CAS  PubMed  Google Scholar 

  35. Landahl P, Ansari D, Andersson R. Severe acute pancreatitis: gut barrier failure, systemic inflammatory response, acute lung injury, and the role of the mesenteric lymph. Surg Infect (Larchmt). 2015;16:651–656.

    Article  Google Scholar 

  36. Cardinale F, Chinellato I, Caimmi S, et al. Perioperative period: immunological modifications. Int J Immunopathol Pharmacol. 2011;24:S3–S12.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang ML, Jiang YF, Wang XR, et al. Different phenotypes of monocytes in patients with new-onset mild acute pancreatitis. World J Gastroenterol. 2017;23:1477–1488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu F, Yue W, Wang Y. The nuclear factor kappa B (NF-κB) activation is required for phagocytosis of Staphylococcus aureus by RAW 264.7 cells. Exp Cell Res. 2014;327:256–263.

    Article  CAS  PubMed  Google Scholar 

  39. Oiva J, Mustonen H, Kylänpää ML, et al. Patients with acute pancreatitis complicated by organ failure show highly aberrant monocyte signaling profiles assessed by phospho-specific flow cytometry. Crit Care Med. 2010;38:1702–1708.

    Article  PubMed  Google Scholar 

  40. Oiva J, Mustonen H, Kylänpää ML, et al. Patients with acute pancreatitis complicated by organ dysfunction show abnormal peripheral blood polymorphonuclear leukocyte signaling. Pancreatology. 2013;13:118–124.

    Article  PubMed  Google Scholar 

  41. Masamune A, Kume K, Kikuta K, et al. 651C/T promoter polymorphism in the CD14 gene is associated with severity of acute pancreatitis in Japan. J Gastroenterol. 2010;45:225–233.

    Article  CAS  PubMed  Google Scholar 

  42. Matas-Cobos AM, Redondo-Cerezo E, Alegría-Motte C, et al. The role of Toll-like receptor polymorphisms in acute pancreatitis occurrence and severity. Pancreas. 2015;44:429–433.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larysa M. Skivka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Susak, Y.M., Dirda, O.O., Fedorchuk, O.G. et al. Infectious Complications of Acute Pancreatitis Is Associated with Peripheral Blood Phagocyte Functional Exhaustion. Dig Dis Sci 66, 121–130 (2021). https://doi.org/10.1007/s10620-020-06172-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06172-y

Keywords

Navigation